Detecting Anomalies in Marine Data: A Framework for Time Series Analysis

被引:0
|
作者
Del Buono, Nicoletta [1 ,2 ]
Esposito, Flavia [1 ,2 ]
Gargano, Grazia [2 ,3 ]
Selicato, Laura [1 ,2 ]
Taggio, Nicolo [4 ]
Ceriola, Giulio [4 ]
Iasillo, Daniela [4 ]
机构
[1] Univ Bari Aldo Moro, Dept Math, Via E Orabona 4, Bari, Italy
[2] INDAM GNCS Res Grp, Rome, Italy
[3] Ist Oncol Giovanni Paolo II, Bari, Italy
[4] Planetek Italia, Bari, Italy
关键词
Anomaly; Outlier; Anomalies detection; Statistical models; Data pre-processing;
D O I
10.1007/978-3-031-25599-1_36
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An ensemble framework for the analysis of time series from marine backgrounds is proposed to finally identify and classify anomalies in data time series collected from European Union's Earth Observation Programme Copernicus and Marine-EO project. The framework aims to estimate a prediction model for anomalies detection when new records are explored and then rank the magnitude of the anomalies eventually detected in some biogeochemical parameters of marine and ocean waters, such as chlorophyll-a concentrations, surface temperature profiles and dissolved oxygen.
引用
收藏
页码:485 / 500
页数:16
相关论文
共 50 条
  • [1] Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach
    Koeppen, W. C.
    Pilger, E.
    Wright, R.
    [J]. BULLETIN OF VOLCANOLOGY, 2011, 73 (05) : 577 - 593
  • [2] Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach
    W. C. Koeppen
    E. Pilger
    R. Wright
    [J]. Bulletin of Volcanology, 2011, 73 : 577 - 593
  • [3] A Comparison of TCN and LSTM Models in Detecting Anomalies in Time Series Data
    Gopali, Saroj
    Abri, Faranak
    Siami-Namini, Sima
    Namin, Akbar Siami
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 2415 - 2420
  • [4] A Framework for Detecting System Performance Anomalies Using Tracing Data Analysis
    Kohyarnejadfard, Iman
    Aloise, Daniel
    Dagenais, Michel R.
    Shakeri, Mahsa
    [J]. ENTROPY, 2021, 23 (08)
  • [5] Time series satellite and ground-based data for detecting earthquake anomalies
    Zoran, M. A.
    Savastru, R. S.
    Savastru, D. M.
    [J]. EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS V, 2014, 9245
  • [6] Detecting Anomalies in Time Series Data via a Meta-Feature Based Approach
    Hui, Min
    Ji, Zhiwei
    Yan, Ke
    Guo, Ye
    Feng, Xiaowei
    Gong, Jiaheng
    Zhao, Xin
    Dong, Ligang
    [J]. IEEE ACCESS, 2018, 6 : 27760 - 27776
  • [7] Learning states and rules for detecting anomalies in time series
    Salvador, S
    Chan, P
    [J]. APPLIED INTELLIGENCE, 2005, 23 (03) : 241 - 255
  • [8] Learning States and Rules for Detecting Anomalies in Time Series
    Stan Salvador
    Philip Chan
    [J]. Applied Intelligence, 2005, 23 : 241 - 255
  • [9] A Multiple Algorithm Approach to the Analysis of GNSS Coordinate Time Series for Detecting Geohazards and Anomalies
    Habboub, Mohammed
    Psimoulis, Panos A.
    Bingley, Richard
    Rothacher, Markus
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2020, 125 (02)
  • [10] Detecting anomalies in time series data from a manufacturing system using recurrent neural networks
    Wang, Yue
    Perry, Michael
    Whitlock, Dane
    Sutherland, John W.
    [J]. JOURNAL OF MANUFACTURING SYSTEMS, 2022, 62 : 823 - 834