Multiscale Deep Feature Learning for Human Activity Recognition Using Wearable Sensors

被引:83
|
作者
Tang, Yin [1 ]
Zhang, Lei [1 ]
Min, Fuhong [1 ]
He, Jun [2 ]
机构
[1] Nanjing Normal Univ, Sch Elect & Automat Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Elect & Informat Engn, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Convolution; Task analysis; Activity recognition; Wearable computers; Standards; Kernel; convolutional neural networks (CNNs); multiscale; sensory data; weakly supervised learning; ACCELEROMETER DATA;
D O I
10.1109/TIE.2022.3161812
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep convolutional neural networks (CNNs) achieve state-of-the-art performance in wearable human activity recognition (HAR), which has become a new research trend in ubiquitous computing scenario. Increasing network depth or width can further improve accuracy. However, in order to obtain the optimal HAR performance on mobile platform, it has to consider a reasonable tradeoff between recognition accuracy and resource consumption. Improving the performance of CNNs without increasing memory and computational burden is more beneficial for HAR. In this article, we first propose a new CNN that uses hierarchical-split (HS) idea for a large variety of HAR tasks, which is able to enhance multiscale feature representation ability via capturing a wider range of receptive fields of human activities within one feature layer. Experiments conducted on benchmarks demonstrate that the proposed HS module is an impressive alternative to baseline models with similar model complexity, and can achieve higher recognition performance (e.g., 97.28%, 93.75%, 99.02%, and 79.02% classification accuracies) on UCI-HAR, PAMAP2, WISDM, and UNIMIB-SHAR. Extensive ablation studies are performed to evaluate the effect of the variations of receptive fields on classification performance. Finally, we demonstrate that multiscale receptive fields can help to learn more discriminative features (achieving 94.10% SOTA accuracy) in weakly labeled HAR dataset.
引用
收藏
页码:2106 / 2116
页数:11
相关论文
共 50 条
  • [1] Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors
    Li, Frederic
    Shirahama, Kimiaki
    Nisar, Muhammad Adeel
    Koeping, Lukas
    Grzegorzek, Marcin
    SENSORS, 2018, 18 (02)
  • [2] MFE-HAR: Multiscale Feature Engineering for Human Activity Recognition Using Wearable Sensors
    Lu, Jianchao
    Zheng, Xi
    Sheng, Quan Z.
    Hussain, Zawar
    Wang, Jiaxing
    Zhou, Wanlei
    PROCEEDINGS OF THE 16TH EAI INTERNATIONAL CONFERENCE ON MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES (MOBIQUITOUS'19), 2019, : 180 - 189
  • [3] Deep Human Activity Recognition Using Wearable Sensors
    Lawal, Isah A.
    Bano, Sophia
    12TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS (PETRA 2019), 2019, : 45 - 48
  • [4] Human Activity Recognition by Using Different Deep Learning Approaches for Wearable Sensors
    Erdas, Cagatay Berke
    Guney, Selda
    NEURAL PROCESSING LETTERS, 2021, 53 (03) : 1795 - 1809
  • [5] Human Activity Recognition by Using Different Deep Learning Approaches for Wearable Sensors
    Çağatay Berke Erdaş
    Selda Güney
    Neural Processing Letters, 2021, 53 : 1795 - 1809
  • [6] Deep-Learning-Based Human Activity Recognition Using Wearable Sensors
    Nouriani, A.
    McGovern, R. A.
    Rajamani, R.
    IFAC PAPERSONLINE, 2022, 55 (37): : 1 - 6
  • [7] Human Activity Recognition With Smartphone and Wearable Sensors Using Deep Learning Techniques: A Review
    Ramanujam, E.
    Perumal, Thinagaran
    Padmavathi, S.
    IEEE SENSORS JOURNAL, 2021, 21 (12) : 13029 - 13040
  • [8] Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances
    Zhang, Shibo
    Li, Yaxuan
    Zhang, Shen
    Shahabi, Farzad
    Xia, Stephen
    Deng, Yu
    Alshurafa, Nabil
    SENSORS, 2022, 22 (04)
  • [9] An Efficient Hierarchical Multiscale and Multidimensional Feature Adaptive Fusion Network for Human Activity Recognition Using Wearable Sensors
    Li, Xinya
    Xu, Hongji
    Wang, Yang
    Zeng, Jiaqi
    Li, Yiran
    Li, Xiaoman
    Ai, Wentao
    Zheng, Hao
    Duan, Yupeng
    IEEE Internet of Things Journal, 2025, 12 (06) : 6492 - 6505
  • [10] Deep Learning for Laying Hen Activity Recognition Using Wearable Sensors
    Shahbazi, Mohammad
    Mohammadi, Kamyar
    Derakhshani, Sayed M.
    Koerkamp, Peter W. G. Groot
    AGRICULTURE-BASEL, 2023, 13 (03):