FeedbackLogs: Recording and Incorporating Stakeholder Feedback into Machine Learning Pipelines

被引:1
|
作者
Barker, Matthew [1 ]
Kallina, Emma [1 ,2 ]
Ashok, Dhananjay [3 ]
Collins, Katherine M. [1 ]
Casovan, Ashley [2 ]
Weller, Adrian [1 ,4 ]
Talwalkar, Ameet [3 ]
Chen, Valerie [3 ]
Bhatt, Umang [1 ,4 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Responsible AI Inst, Austin, TX USA
[3] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[4] Alan Turing Inst, London, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
D O I
10.1145/3617694.3623239
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
As machine learning (ML) pipelines affect an increasing array of stakeholders, there is a growing need for documenting how input from stakeholders is recorded and incorporated. We propose FeedbackLogs, addenda to existing documentation of ML pipelines, to track the input of multiple stakeholders. Each log records important details about the feedback collection process, the feedback itself, and how the feedback is used to update the ML pipeline. In this paper, we introduce and formalise a process for collecting a FeedbackLog. We also provide concrete use cases where FeedbackLogs can be employed as evidence for algorithmic auditing and as a tool to record updates based on stakeholder feedback.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] On the Democratization of Machine Learning Pipelines
    Carqueja, Alexandre
    Cabral, Bruno
    Fernandes, Joao Paulo
    Lourenco, Nuno
    [J]. 2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 455 - 462
  • [2] Debugging Machine Learning Pipelines
    Lourenco, Raoni
    Freire, Juliana
    Shasha, Dennis
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL WORKSHOP ON DATA MANAGEMENT FOR END-TO-END MACHINE LEARNING, DEEM 2019, 2019,
  • [3] Data pricing in machine learning pipelines
    Zicun Cong
    Xuan Luo
    Jian Pei
    Feida Zhu
    Yong Zhang
    [J]. Knowledge and Information Systems, 2022, 64 : 1417 - 1455
  • [4] Data pricing in machine learning pipelines
    Cong, Zicun
    Luo, Xuan
    Pei, Jian
    Zhu, Feida
    Zhang, Yong
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (06) : 1417 - 1455
  • [5] mlr3pipelines-Flexible Machine Learning Pipelines in R
    Binder, Martin
    Pfisterer, Florian
    Lang, Michel
    Schneider, Lennart
    Kotthoff, Lars
    Bischl, Bernd
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [6] mlr3pipelines - flexible machine learning pipelines in r
    Binder, Martin
    Pfisterer, Florian
    Lang, Michel
    Schneider, Lennart
    Kotthofi, Lars
    Bischl, Bernd
    [J]. Journal of Machine Learning Research, 2021, 22 : 1 - 7
  • [7] Data distribution debugging in machine learning pipelines
    Grafberger, Stefan
    Groth, Paul
    Stoyanovich, Julia
    Schelter, Sebastian
    [J]. VLDB JOURNAL, 2022, 31 (05): : 1103 - 1126
  • [8] Data distribution debugging in machine learning pipelines
    Stefan Grafberger
    Paul Groth
    Julia Stoyanovich
    Sebastian Schelter
    [J]. The VLDB Journal, 2022, 31 : 1103 - 1126
  • [9] Automatic Generation of Visualizations for Machine Learning Pipelines
    Liu, Lei
    Chen, Wei-Peng
    Bahrami, Mehdi
    Prasad, Mukul
    [J]. PROCEEDINGS OF THE 37TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, ASE 2022, 2022,
  • [10] Time Travel and Provenance for Machine Learning Pipelines
    Ormenisan, Alexandru A.
    Meister, Moritz
    Buso, Fabio
    Andersson, Robin
    Haridi, Seif
    Dowling, Jim
    [J]. PROCEEDINGS OF THE 2020 USENIX CONFERENCE ON OPERATIONAL MACHINE LEARNING (OPML '20), 2020, : 13 - 15