Deep learning combining FDG-PET and neurocognitive data accurately predicts MCI conversion to Alzheimer's dementia 3-year post MCI diagnosis

被引:5
|
作者
Cao, Eric [1 ,2 ]
Ma, Da [3 ]
Nayak, Siddharth [4 ]
Duong, Tim Q. [1 ,2 ,5 ,6 ]
机构
[1] Albert Einstein Coll Med, Dept Radiol, Bronx, NY 10467 USA
[2] Montefiore Med Ctr, Bronx, NY 10467 USA
[3] Wake Forest Univ, Bowman Gray Sch Med, Dept Internal Med, Sect Gerontol & Geriatr Med, Winston Salem, NC 27109 USA
[4] Weill Cornell Med, Dept Radiol, New York, NY 10065 USA
[5] Albert Einstein Coll Med, Dept Radiol, 111 E 210th St, Bronx, NY 10467 USA
[6] Montefiore Hlth Syst, 111 E 210th St, Bronx, NY 10467 USA
关键词
Positron emission tomography; Mild cognitive impairment; Machine learning; Artificial intelligence; Dementia; MRI; MILD COGNITIVE IMPAIRMENT; CINGULATE GYRUS; DISEASE; METABOLISM; PROGRESSION; VARIANTS;
D O I
10.1016/j.nbd.2023.106310
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Introduction: This study reports a novel deep learning approach to predict mild cognitive impairment (MCI) conversion to Alzheimer's dementia (AD) within three years using whole-brain fluorodeoxyglucose (FDG) positron emission tomography (PET) and cognitive scores (CS). Methods: This analysis consisted of 150 normal controls (CN), 257 MCI, and 205 AD subjects from ADNI. FDGPET and CS were obtained at MCI diagnosis to predict AD conversion within three years of MCI diagnosis using convolutional neural networks. Results: Neurocognitive scores predicted better than FDG-PET per se, but the best model was a combination of FDG-PET, age, and neurocognitive data, yielding an AUC of 0.785 +/- 0.096 and a balanced accuracy of 0.733 +/- 0.098. Saliency maps highlighted putamen, thalamus, inferior frontal gyrus, parietal operculum, precuneus cortices, calcarine cortices, temporal gyrus, and planum temporale to be important for prediction. Discussion: Deep learning accurately predicts MCI conversion to AD and provides neural correlates of brain regions associated with AD conversion.
引用
收藏
页数:8
相关论文
共 13 条
  • [1] Deep Learning for Diagnosis of Alzheimer's Disease with FDG-PET Neuroimaging
    Bastos, Jose
    Silva, Filipe
    Georgieva, Petia
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2022), 2022, 13256 : 95 - 107
  • [2] Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease - FDG-PET studies in MCI and AD
    Mosconi, L
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2005, 32 (04) : 486 - 510
  • [3] Deep learning based diagnosis of Alzheimer's disease using FDG-PET images
    Kishore, Nand
    Goel, Neelam
    NEUROSCIENCE LETTERS, 2023, 817
  • [4] Early Diagnosis of Alzheimer's Disease by Ensemble Deep Learning Using FDG-PET
    Zheng, Chuanchuan
    Xia, Yong
    Chen, Yuanyuan
    Yin, Xiaoxia
    Zhang, Yanchun
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, 2018, 11266 : 614 - 622
  • [5] 18F-FDG PET for the early diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI)
    Smailagic, Nadja
    Vacante, Marco
    Hyde, Chris
    Martin, Steven
    Ukoumunne, Obioha
    Sachpekidis, Christos
    COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2015, (01):
  • [6] Fully automatic differential diagnosis system for dementia with Lewy bodies and Alzheimer's disease using FDG-PET and 3D-SSP
    Kono, Atsushi K.
    Ishii, Kazunari
    Sofue, Keitaro
    Miyamoto, Naokazu
    Sakamoto, Setsu
    Mori, Etsuro
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2007, 34 (09) : 1490 - 1497
  • [7] Fully automatic differential diagnosis system for dementia with Lewy bodies and Alzheimer’s disease using FDG-PET and 3D-SSP
    Atsushi K. Kono
    Kazunari Ishii
    Keitaro Sofue
    Naokazu Miyamoto
    Setsu Sakamoto
    Etsuro Mori
    European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34 : 1490 - 1497
  • [8] The impact of clinical atlas-based MR attenuation correction on the diagnosis of FDG-PET/MR for Alzheimer's diseases - simulation study combining multi -center data and ADNI-data
    Sekine, Tetsuro
    Alfred, Buck
    Delso, Gaspar
    Bradley, Kemp
    ter Voert, Edwin
    Huellner, Martin
    Veit-Haibach, Patrick
    Kaushik, Sandeep
    Wiesinger, Florian
    Warnock, Geoffrey
    JOURNAL OF NUCLEAR MEDICINE, 2019, 60
  • [9] Probability of conversion to Alzheimer's dementia (AD) in long-term non converters mild cognitive impairment (NC-MCI) patients: a volume of interest-based multivariate approach to 18F-FDG PET
    Bauckneht, M.
    Pagani, M.
    Giuliani, A.
    Berg, J.
    Chincarini, A.
    Arnaldi, D.
    Picco, A.
    Bongioanni, F.
    Nieri, A.
    Pomposelli, E.
    Maggio, S.
    Peschiera, F.
    Sambuceti, G.
    Nobili, F.
    Morbelli, S.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2016, 43 : S625 - S625
  • [10] A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer's disease, and mild cognitive impairment using brain 18F-FDG PET
    Etminani, Kobra
    Soliman, Amira
    Davidsson, Anette
    Chang, Jose R.
    Martinez-Sanchis, Begona
    Byttner, Stefan
    Camacho, Valle
    Bauckneht, Matteo
    Stegeran, Roxana
    Ressner, Marcus
    Agudelo-Cifuentes, Marc
    Chincarini, Andrea
    Brendel, Matthias
    Rominger, Axel
    Bruffaerts, Rose
    Vandenberghe, Rik
    Kramberger, Milica G.
    Trost, Maja
    Nicastro, Nicolas
    Frisoni, Giovanni B.
    Lemstra, Afina W.
    van Berckel, Bart N. M.
    Pilotto, Andrea
    Padovani, Alessandro
    Morbelli, Silvia
    Aarsland, Dag
    Nobili, Flavio
    Garibotto, Valentina
    Ochoa-Figueroa, Miguel
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (02) : 563 - 584