MODIFIED SPLIT-STEP THETA METHOD FOR STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTION

被引:0
|
作者
Zhao, Jingjun [1 ]
Zhou, Hao [1 ]
Xu, Yang [1 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2024年 / 42卷 / 05期
基金
中国国家自然科学基金;
关键词
Stochastic differential equation; Fractional Brownian motion; Split-step theta method; Strong convergence; Exponential stability; EULER-MARUYAMA METHOD; NUMERICAL-SIMULATION; CONVERGENCE; STABILITY;
D O I
10.4208/jcm.2301-m2022-0088
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For solving the stochastic differential equations driven by fractional Brownian motion, we present the modified split-step theta method by combining truncated Euler-Maruyama method with split-step theta method. For the problem under a locally Lipschitz condition and a linear growth condition, we analyze the strong convergence and the exponential stability of the proposed method. Moreover, for the stochastic delay differential equations with locally Lipschitz drift condition and globally Lipschitz diffusion condition, we give the order of convergence. Finally, numerical experiments are done to confirm the theoretical conclusions.
引用
下载
收藏
页码:1226 / 1245
页数:20
相关论文
共 50 条