Besides its application as nonlinear optical devices, La2CaB10O19 (LCB) crystal has been extensively studied as a host crystal due to excellent properties. Nevertheless, rare-earth (RE) ions doped LCB crystals for ultraviolet (UV) lasers have not been studied yet. In this work, Ce3+ doped La2CaB10O19 (Ce3+:LCB) crystal with the size of 40 mmx21 mmx6 mm was grown by top-seeded solution growth (TSSG) method. Its lattice parameters are slightly different from that of the LCB crystal, and its X-ray rocking curve indicates that the Ce3+:LCB is of high crystalline quality. Transmittance spectrum and UV absorption spectrum measured at room temperature show intense absorption in the ranges of 200-288 nm and 305-330 nm, and Sellmeier equations for the refractive indices were determined by least-squares method. The excitation and fluorescence spectra show that there are two broad excitation peaks at 280 nm and 316 nm, corresponding to transitions of Ce3+ ions from 4f to 5d. Four emission peaks were obtained at 290, 304, 331, and 355 nm, which correspond to transitions from 5d state to F-2(5/2) state and F-2(7/2) state. Ce3+:LCB crystal exhibits high thermal conductivity (6.45 W/(m center dot K)) at 300 K, and keeps good thermal stability with the increase of temperatures. Its thermal expansion coefficients and lattice parameters of c direction linearly enlarge from 2.94x10(-6) /K and 0.91240 nm to 5.3x10(-5) /K and 0.91246 nm in the temperature range from 358 K to 773 K, respectively. These results demonstrate that Ce3+:LCB crystal has excellent optical properties and good thermal stability, which is conducive to its application for UV lasers.