Bayesian empirical likelihood inference for the mean absolute deviation

被引:1
|
作者
Jiang, Hongyan [1 ]
Zhao, Yichuan [2 ,3 ]
机构
[1] Huaiyin Inst Technol, Dept Math & Phys, Huaian, Peoples R China
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA USA
[3] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
关键词
Adjusted empirical likelihood; Bayesian empirical likelihood; Bayesian jackknife empirical likelihood; empirical likelihood; mean absolute deviation; QUANTILE; INTERVALS;
D O I
10.1080/02331888.2024.2325412
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The mean absolute deviation (MAD) is a direct measure of the dispersion of a random variable about its mean. In this paper, the empirical likelihood (EL) and the adjusted EL methods for the MAD are proposed. The Bayesian empirical likelihood, the Bayesian adjusted empirical likelihood, the Bayesian jackknife empirical likelihood and the Bayesian adjusted jackknife empirical likelihood methods are used to construct credible intervals for the MAD. Simulation results show that the proposed EL method performs better than the JEL in Zhao et al. [Jackknife empirical likelihood inference for the mean absolute deviation. Comput Stat Data Anal. 2015;91:92-101], and the proper prior information improves coverage rates of confidence/credible intervals. Two real datasets are used to illustrate the new procedures.
引用
收藏
页码:277 / 301
页数:25
相关论文
共 50 条
  • [1] Jackknife empirical likelihood inference for the mean absolute deviation
    Zhao, Yichuan
    Meng, Xueping
    Yang, Hanfang
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 91 : 92 - 101
  • [2] Bayesian empirical likelihood inference with complex survey data
    Zhao, Puying
    Ghosh, Malay
    Rao, J. N. K.
    Wu, Changbao
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2020, 82 (01) : 155 - 174
  • [3] Empirical likelihood inference for the mean past lifetime function
    Defor, Edem
    Zhao, Yichuan
    [J]. STATISTICS, 2022, 56 (02) : 329 - 346
  • [4] Empirical likelihood inference for a common mean in the presence of heteroscedasticity
    Tsao, M
    Wu, CB
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2006, 34 (01): : 45 - 59
  • [5] Mean Empirical Likelihood Inference for Response Mean with Data Missing at Random
    He, Hanji
    Deng, Guangming
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [6] Bayesian empirical likelihood inference and order shrinkage for autoregressive models
    Yang, Kai
    Ding, Xue
    Yuan, Xiaohui
    [J]. STATISTICAL PAPERS, 2022, 63 (01) : 97 - 121
  • [7] Bayesian empirical likelihood inference and order shrinkage for autoregressive models
    Kai Yang
    Xue Ding
    Xiaohui Yuan
    [J]. Statistical Papers, 2022, 63 : 97 - 121
  • [8] Inference for the mean residual life function via empirical likelihood
    Zhao, Yichuan
    Qin, Gengsheng
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (06) : 1025 - 1036
  • [9] Bayesian jackknife empirical likelihood-based inference for missing data and causal inference
    Chen, Sixia
    Wang, Yuke
    Zhao, Yichuan
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024,
  • [10] Bayesian inference for risk minimization via exponentially tilted empirical likelihood
    Tang, Rong
    Yang, Yun
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2022, 84 (04) : 1257 - 1286