Hijacking the hydrogen atoms in photo-splitting of H2O2 for efficient reduction of CO2 to CH3OH

被引:4
|
作者
Kularkar, Ankush [1 ,2 ]
Chaudhari, Sachin [1 ]
Pola, Someshwar [3 ]
Rayalu, Sadhana S. [1 ]
Chan, Sunney I. [1 ,4 ]
Nagababu, Penumaka [1 ,2 ]
机构
[1] CSIR Natl Environm Engn Res Inst NEERI, Environm Mat Div EMD, Nagpur 440020, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, Uttar Pradesh, India
[3] Osmania Univ, Dept Chem, Hyderabad 500007, India
[4] Acad Sinica, Inst Chem, Taipei 11529, Taiwan
关键词
Metal-organic frameworks; Photocatalysis; Carbon dioxide fixation; Conversion ofCO2 intoCH3OH; METAL-ORGANIC FRAMEWORKS; ELECTROCATALYTIC REDUCTION; PHOTOCATALYTIC REDUCTION;
D O I
10.1016/j.fuel.2023.128716
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Photo-splitting of H2O2 in visible light is achieved by Cu-MOFs of Cu nodes and 1, 3, 5-benzene tricarboxylic acid (BTC) organic linkers (CuM) decorated with CdS (C) at varying concentrations of CdS in the CuMC composite. This process produces abundant nascent hydrogen atoms to promote the efficient catalytic reduction of CO2 to methanol (CH3OH) in visible light. The slow rate of recombination of the nascent hydrogen atoms produced by the H2O2 photo-splitting on the surface of the CdS quantum dots ensures a high steady-state concentration of hydrogen atoms with significantly reduced production of the less reactive hydrogen gas. With slow recombi-nation of the photo-generated charges and the large surface areas for CO2 adsorption by the MOF, one of the CuMC composites is capable of converting CO2 into CH3OH with a quantum efficiency approaching 80 %. A mechanism for the selective conversion of CO2 into CH3OH is proposed.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Investigation of the Phase Equilibria of CO2/CH3OH/H2O and CO2/CH3OH/H2O/H2 Mixtures
    Vogel, Kevin
    Hocke, Elisabeth
    Beisswenger, Lucien
    Drochner, Alfons
    Etzold, Bastian J. M.
    Vogel, Herbert
    CHEMICAL ENGINEERING & TECHNOLOGY, 2019, 42 (11) : 2386 - 2392
  • [2] Infrared spectra of CO2 in H2O:CH3OH:CO2 icy mixtures
    Palumbo, ME
    Baratta, GA
    ASTRONOMY & ASTROPHYSICS, 2000, 361 (01) : 298 - 302
  • [3] Harnessing reactive hydrogen species via H2O2 photolysis for reduction of CO2 to CH3OH using CaIn2S4@ZnMOF photocatalyst
    Kularkar, Ankush
    Khedekar, Vaibhav Vilas
    Chaudhari, Sachin D.
    Ravi, Mudavath
    Rayalu, Sadhana S.
    Nagababu, Penumaka
    APPLIED CATALYSIS A-GENERAL, 2024, 669
  • [4] Porosity and thermal collapse measurements of H2O, CH3OH, CO2, and H2O:CO2 ices
    Isokoski, K.
    Bossa, J. -B.
    Triemstra, T.
    Linnartz, H.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (08) : 3456 - 3465
  • [5] H2O2氧化法处理低ρ(CH3OH)废水
    李金环
    王东旭
    邓家朋
    李金莲
    化工科技, 2019, 27 (05) : 10 - 12
  • [6] Interaction Energy and the Shift in OH Stretch Frequency on Hydrogen Bonding for the H2O→H2O, CH3OH→H2O, and H2O→CH3OH dimers
    Campen, Richard Kramer
    Kubicki, James D.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (05) : 963 - 972
  • [7] Electrochemical Reduction of CO2 to CH3OH Catalyzed by an Iron Porphyrinoid
    Saha, Paramita
    Amanullah, Sk
    Barman, Sudip
    Dey, Abhishek
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147 (02) : 1497 - 1507
  • [8] Theoretical Studies on the CO2 Reduction to CH3OH on Cu(211)
    Liu, Shan Ping
    Zhao, Ming
    Gao, Wang
    Jiang, Qing
    Jacob, Timo
    ELECTROCATALYSIS, 2017, 8 (06) : 647 - 656
  • [9] Electrochemical Reduction of CO2 to CH3OH at Copper Oxide Surfaces
    Le, M.
    Ren, M.
    Zhang, Z.
    Sprunger, P. T.
    Kurtz, R. L.
    Flake, J. C.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (05) : E45 - E49
  • [10] Monte Carlo simulation for vapor-liquid equilibrium of binary mixtures CO2/CH3OH, CO2/C2H5OH, and CO2/CH3CH2CH2OH
    Moon, SD
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2002, 23 (06) : 811 - 816