An improved multistage preconditioner on GPUs for compositional reservoir simulation

被引:1
|
作者
Zhao, Li [1 ]
Li, Shizhe [2 ]
Zhang, Chen-Song [2 ]
Feng, Chunsheng [1 ,3 ,4 ]
Shu, Shi [1 ,3 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Univ Chinese Acad Sci, Chinese Acad Sci, Acad Math & Syst Sci, Sch Math Sci,LSEC & NCMIS, Beijing 100190, Peoples R China
[3] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
[4] Hunan Shaofeng Inst Appl Math, Natl Ctr Appl Math Hunan, Xiangtan 411105, Peoples R China
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
Compositional model; Fully implicit method; multistage preconditioner; multicolor Gauss-Seidel; GPU; Compute unified device architecture (CUDA); EQUATION;
D O I
10.1007/s42514-023-00136-0
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The compositional model is often used to describe multicomponent multiphase porous media flows in the petroleum industry. The fully implicit method with strong stability and weak constraints on time-step sizes is commonly used in mainstream commercial reservoir simulators. In this paper, we develop an efficient multistage preconditioner for the fully implicit compositional flow simulation. The method employs an adaptive setup phase to improve the parallel efficiency on GPUs. Furthermore, a multicolor Gauss-Seidel algorithm based on the adjacency matrix is applied in the algebraic multigrid methods for the pressure part. Numerical results demonstrate that the proposed algorithm achieves good parallel speedup while yielding the same convergence behavior as the corresponding sequential version.
引用
收藏
页码:144 / 159
页数:16
相关论文
共 50 条
  • [1] An improved multistage preconditioner on GPUs for compositional reservoir simulation
    Li Zhao
    Shizhe Li
    Chen-Song Zhang
    Chunsheng Feng
    Shi Shu
    [J]. CCF Transactions on High Performance Computing, 2023, 5 : 144 - 159
  • [2] An Improved Multi-Stage Preconditioner on GPUs for Compositional Reservoir Simulation
    Zhao, Li
    Zhang, Chen-Song
    Feng, Chun-Sheng
    Shu, Shi
    [J]. arXiv, 2022,
  • [3] Mixed precision parallel preconditioner and linear solver for compositional reservoir simulation
    Khaz'ali, Ali Reza
    Rasaei, Mohammad Reza
    Moghadasi, Jamshid
    [J]. COMPUTATIONAL GEOSCIENCES, 2014, 18 (05) : 729 - 746
  • [4] Mixed precision parallel preconditioner and linear solver for compositional reservoir simulation
    Ali Reza Khaz’ali
    Mohammad Reza Rasaei
    Jamshid Moghadasi
    [J]. Computational Geosciences, 2014, 18 : 729 - 746
  • [5] Reservoir Simulation on NVIDIA Tesla GPUs
    Chen, Zhangxin
    Liu, Hui
    Yu, Song
    Hsieh, Ben
    Shao, Lei
    [J]. RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS, 2013, 586 : 125 - 133
  • [6] Upscaling for Compositional Reservoir Simulation
    Li, Hangyu
    Durlofsky, Louis J.
    [J]. SPE JOURNAL, 2016, 21 (03): : 873 - 887
  • [7] Compositional Reservoir Simulation: A Review
    Young, Larry C.
    [J]. SPE JOURNAL, 2022, 27 (05): : 2746 - 2792
  • [8] Compositional and black oil reservoir simulation
    Coats, KH
    Thomas, LK
    Pierson, RG
    [J]. SPE RESERVOIR EVALUATION & ENGINEERING, 1998, 1 (04) : 372 - 379
  • [9] MATHEMATICAL STRUCTURE OF COMPOSITIONAL RESERVOIR SIMULATION
    TRANGENSTEIN, JA
    BELL, JB
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (05): : 817 - 845
  • [10] Fully compositional and thermal reservoir simulation
    Zaydullin, Rustem
    Voskov, Denis V.
    James, Scott C.
    Henley, Heath
    Lucia, Angelo
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2014, 63 : 51 - 65