Label-based meta-analysis of functional brain dysconnectivity across mood and psychotic disorders

被引:1
|
作者
Grot, Stephanie [1 ,2 ]
Smine, Salima [1 ]
Potvin, Stephane [1 ,2 ]
Darcey, Maeliss [1 ]
Pavlov, Vilena [1 ]
Genon, Sarah [3 ,4 ]
Nguyen, Hien [5 ,6 ]
Orban, Pierre [1 ,2 ,7 ]
机构
[1] Univ Inst Mental Hlth, Res Ctr, Montreal, PQ, Canada
[2] Univ Montreal, Dept Psychiat & Addictol, Montreal, PQ, Canada
[3] Inst Neurosci & Med Brain & Behav INM 7, Res Ctr Julich, Julich, Germany
[4] Heinrich Heine Univ Dusseldorf, Inst Syst Neurosci, Med Fac, Dusseldorf, Germany
[5] Univ Queensland, Sch Math & Phys, St Lucia, Qld, Australia
[6] Univ Melbourne, Dept Math & Stat, Melbourne, Vic, Australia
[7] Univ Santementale Montreal, Ctr Rech Inst, 7331 rue Hochelaga, Montreal, PQ H1N 3V2, Canada
基金
加拿大健康研究院;
关键词
Bipolar disorder; Connectome; Major depression; Resting -state fMRI; Schizophrenia; Transdiagnostic; NEURAL CIRCUIT DISRUPTIONS; FALSE DISCOVERY RATE; COGNITIVE CONTROL; BIPOLAR DISORDER; NETWORK; SCHIZOPHRENIA; PSYCHOPATHOLOGY; ACTIVATION; FMRI; CONNECTIVITY;
D O I
10.1016/j.pnpbp.2024.110950
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Resting -state functional magnetic resonance imaging (rsfMRI) studies have revealed patterns of functional brain dysconnectivity in psychiatric disorders such as major depression disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ). Although these disorders have been mostly studied in isolation, there is mounting evidence of shared neurobiological alterations across them. Methods: To uncover the nature of the relatedness between these psychiatric disorders, we conducted an innovative meta -analysis of dysconnectivity findings reported separately in MDD, BD and SZ. Rather than relying on a classical voxel level coordinate -based approach, our procedure extracted relevant neuroanatomical labels from text data and examined findings at the whole brain network level. Data were drawn from 428 rsfMRI studies investigating MDD (158 studies, 7429 patients/7414 controls), BD (81 studies, 3330 patients/4096 patients) and/or SZ (223 studies, 11,168 patients/11,754 controls). Permutation testing revealed commonalities and differences in hypoconnectivity and hyperconnectivity patterns across disorders. Results: Hypoconnectivity and hyperconnectivity patterns of higher -order cognitive (default -mode, frontoparietal, cingulo-opercular) networks were similarly observed across the three disorders. By contrast, dysconnectivity of lower -order (somatomotor, visual, auditory) networks in some cases differed between disorders, notably dissociating SZ from BD and MDD. Conclusions: Findings suggest that functional brain dysconnectivity of higher -order cognitive networks is largely transdiagnostic in nature while that of lower -order networks may best discriminate between mood and psychotic disorders, thus emphasizing the relevance of motor and sensory networks to psychiatric neuroscience.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Brain age in mood and psychotic disorders: a systematic review and meta-analysis
    Ballester, Pedro L.
    Romano, Maria T.
    de Azevedo Cardoso, Taiane
    Hassel, Stefanie
    Strother, Stephen C.
    Kennedy, Sidney H.
    Frey, Benicio N.
    [J]. ACTA PSYCHIATRICA SCANDINAVICA, 2022, 145 (01) : 42 - 55
  • [2] Common Functional MRI Markers of Risk for Psychotic, Mood and Anxiety Disorders: A Meta-Analysis
    Clauss, Jacqueline
    Blackford, Jennifer
    Holt, Daphne
    [J]. BIOLOGICAL PSYCHIATRY, 2019, 85 (10) : S149 - S149
  • [3] Midline Brain Abnormalities Across Psychotic and Mood Disorders
    Landin-Romero, Ramon
    Amann, Benedikt L.
    Sarro, Salvador
    Guerrero-Pedraza, Amalia
    Vicens, Victor
    Rodriguez-Cano, Elena
    Vieta, Eduard
    Salvador, Raymond
    Pomarol-Clotet, Edith
    Radua, Joaquim
    [J]. SCHIZOPHRENIA BULLETIN, 2016, 42 (01) : 229 - 238
  • [4] A comparison of label-based review and ALE meta-analysis in the stroop task
    Laird, AR
    McMillan, KM
    Lancaster, JL
    Kochunov, P
    Turkeltaub, PE
    Pardo, JV
    Fox, PT
    [J]. HUMAN BRAIN MAPPING, 2005, 25 (01) : 6 - 21
  • [5] Psychotic, Mood, and Anxiety Disorders and Venous Thromboembolism: A Systematic Review and Meta-Analysis
    Kowal, Celia
    Peyre, Hugo
    Amad, Ali
    Pelissolo, Antoine
    Leboyer, Marion
    Schurhoff, Franck
    Pignon, Baptiste
    [J]. PSYCHOSOMATIC MEDICINE, 2020, 82 (09) : 838 - 849
  • [6] Mood disorders and migration - Meta-analysis
    Swinnen, Sanne G. H. A.
    Selten, Jean-Paul
    [J]. BRITISH JOURNAL OF PSYCHIATRY, 2007, 190 : 6 - 10
  • [7] The prevalence of anxiety disorders in psychotic disorders:: A meta-analysis
    Roy, M. -A.
    Raymond, E.
    Olivier, D.
    Maziade, M.
    Merette, C.
    Vallieres, C.
    L'Heureux, S.
    Bouchard, R. -H.
    [J]. SCHIZOPHRENIA RESEARCH, 2006, 86 : S113 - S114
  • [8] Dysconnectivity of Multiple Brain Networks in Schizophrenia: A Meta-Analysis of Resting-State Functional Connectivity
    Li, Siyi
    Hu, Na
    Zhang, Wenjing
    Tao, Bo
    Dai, Jing
    Gong, Yao
    Tan, Youguo
    Cai, Duanfang
    Lui, Su
    [J]. FRONTIERS IN PSYCHIATRY, 2019, 10
  • [9] Brain structural correlates of familial risk for mental illness: a meta-analysis of voxel-based morphometry studies in relatives of patients with psychotic or mood disorders
    Wenjing Zhang
    John A. Sweeney
    Li Yao
    Siyi Li
    Jiaxin Zeng
    Mengyuan Xu
    Maxwell J. Tallman
    Qiyong Gong
    Melissa P. DelBello
    Su Lui
    Fabiano G. Nery
    [J]. Neuropsychopharmacology, 2020, 45 : 1369 - 1379
  • [10] Brain structural correlates of familial risk for mental illness: a meta-analysis of voxel-based morphometry studies in relatives of patients with psychotic or mood disorders
    Zhang, Wenjing
    Sweeney, John A.
    Yao, Li
    Li, Siyi
    Zeng, Jiaxin
    Xu, Mengyuan
    Tallman, Maxwell J.
    Gong, Qiyong
    DelBello, Melissa P.
    Lui, Su
    Nery, Fabiano G.
    [J]. NEUROPSYCHOPHARMACOLOGY, 2020, 45 (08) : 1369 - 1379