Filtering, Distillation, and Hard Negatives for Vision-Language Pre-Training

被引:7
|
作者
Radenovic, Filip [1 ]
Dubey, Abhimanyu [1 ]
Kadian, Abhishek [1 ]
Mihaylov, Todor [1 ]
Vandenhende, Simon [1 ]
Patel, Yash [2 ]
Wen, Yi [1 ]
Ramanathan, Vignesh [1 ]
Mahajan, Dhruv [1 ]
机构
[1] Meta AI, New York, NY 10003 USA
[2] Czech Tech Univ, Prague, Czech Republic
关键词
D O I
10.1109/CVPR52729.2023.00673
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vision-language models trained with contrastive learning on large-scale noisy data are becoming increasingly popular for zero-shot recognition problems. In this paper we improve the following three aspects of the contrastive pre-training pipeline: dataset noise, model initialization and the training objective. First, we propose a straightforward filtering strategy titled Complexity, Action, and Text-spotting (CAT) that significantly reduces dataset size, while achieving improved performance across zero-shot vision-language tasks. Next, we propose an approach titled Concept Distillation to leverage strong unimodal representations for contrastive training that does not increase training complexity while outperforming prior work. Finally, we modify the traditional contrastive alignment objective, and propose an importance-sampling approach to up-sample the importance of hard-negatives without adding additional complexity. On an extensive zero-shot benchmark of 29 tasks, our Distilled and Hard-negative Training (DiHT) approach improves on 20 tasks compared to the baseline. Furthermore, for few-shot linear probing, we propose a novel approach that bridges the gap between zero-shot and few-shot performance, substantially improving over prior work. Models are available at github.com/facebookresearch/diht.
引用
收藏
页码:6967 / 6977
页数:11
相关论文
共 50 条
  • [1] Survey on Vision-language Pre-training
    Yin J.
    Zhang Z.-D.
    Gao Y.-H.
    Yang Z.-W.
    Li L.
    Xiao M.
    Sun Y.-Q.
    Yan C.-G.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (05): : 2000 - 2023
  • [2] VLP: A Survey on Vision-language Pre-training
    Chen, Fei-Long
    Zhang, Du-Zhen
    Han, Ming-Lun
    Chen, Xiu-Yi
    Shi, Jing
    Xu, Shuang
    Xu, Bo
    MACHINE INTELLIGENCE RESEARCH, 2023, 20 (01) : 38 - 56
  • [3] VLP: A Survey on Vision-language Pre-training
    Fei-Long Chen
    Du-Zhen Zhang
    Ming-Lun Han
    Xiu-Yi Chen
    Jing Shi
    Shuang Xu
    Bo Xu
    Machine Intelligence Research, 2023, 20 (01) : 38 - 56
  • [4] VLP: A Survey on Vision-language Pre-training
    Fei-Long Chen
    Du-Zhen Zhang
    Ming-Lun Han
    Xiu-Yi Chen
    Jing Shi
    Shuang Xu
    Bo Xu
    Machine Intelligence Research, 2023, 20 : 38 - 56
  • [5] Bootstrapping Vision-Language Learning with Decoupled Language Pre-training
    Jian, Yiren
    Gao, Chongyang
    Vosoughi, Soroush
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [6] Pre-training A Prompt Pool for Vision-Language Model
    Liu, Jun
    Gu, Yang
    Yang, Zhaohua
    Guo, Shuai
    Liu, Huaqiu
    Chen, Yiqiang
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [7] Contrastive Vision-Language Pre-training with Limited Resources
    Cui, Quan
    Zhou, Boyan
    Guo, Yu
    Yin, Weidong
    Wu, Hao
    Yoshie, Osamu
    Chen, Yubo
    COMPUTER VISION, ECCV 2022, PT XXXVI, 2022, 13696 : 236 - 253
  • [8] Vision-language pre-training via modal interaction
    Cheng, Hang
    Ye, Hehui
    Zhou, Xiaofei
    Liu, Ximeng
    Chen, Fei
    Wang, Meiqing
    PATTERN RECOGNITION, 2024, 156
  • [9] Vision-Language Pre-Training with Triple Contrastive Learning
    Yang, Jinyu
    Duan, Jiali
    Tran, Son
    Xu, Yi
    Chanda, Sampath
    Chen, Liqun
    Zeng, Belinda
    Chilimbi, Trishul
    Huang, Junzhou
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 15650 - 15659
  • [10] Vision-Language Pre-Training for Boosting Scene Text Detectors
    Song, Sibo
    Wan, Jianqiang
    Yang, Zhibo
    Tang, Jun
    Cheng, Wenqing
    Bai, Xiang
    Yao, Cong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 15660 - 15670