Fast camouflaged object detection via multi-scale feature-enhanced network

被引:1
|
作者
Zhou, Bingqin [1 ]
Yang, Kun [1 ,2 ]
Gao, Zhigang [3 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Peoples R China
[2] Key Lab Brain Machine Collaborat Intelligence Zhej, Hangzhou 310018, Peoples R China
[3] China Jiliang Univ, Coll Informat Engn, Hangzhou 310018, Peoples R China
关键词
Camouflaged object detection; Multi-scale feature enhancement; Convolutional neural network; Fast detection; ADAPTIVE FILTERS;
D O I
10.1007/s11760-024-03051-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The aim of camouflaged object detection (COD) is to identify objects that are hidden or camouflaged in the visual scene. Since camouflaged objects have fuzzy boundaries and are very similar to their surroundings, the task of COD, especially multi-scale COD, is still challenging. Based on ERRNet, we proposed a multi-scale feature-enhanced network (MSFENet). Specifically, we have developed a multi-scale feature enhancement module (MFEM), which adopts a coarse-to-fine manner to improve the ability of a single layer to represent multi-scale information. This module can extract more complete large-scale target feature information and retain much more small-scale target feature information and less regional background information. The experimental results on publicly available datasets show that our proposed MSFENet outperforms 10 mainstream methods. The ablation studies show that the proposed module is effective in improving the detection performance of multi-scale camouflaging objects and improving the overall performance. Compared with ERRNet, the average S alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_\alpha $$\end{document}, E phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_\phi $$\end{document} and F beta W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_\beta <^>W $$\end{document} scores of the MSFENet are 1.2%, 0.6% and 2.5% higher for the multi-scale COD task. In addition, the proposed MSFENet can be directly used for real-time detection due to its fast inference capability (i.e., 75.3 frames per second).
引用
收藏
页码:3903 / 3914
页数:12
相关论文
共 50 条
  • [1] Fast camouflaged object detection via multi-scale feature-enhanced network
    Bingqin Zhou
    Kun Yang
    Zhigang Gao
    [J]. Signal, Image and Video Processing, 2024, 18 : 3903 - 3914
  • [2] Guided multi-scale refinement network for camouflaged object detection
    Xiuqi Xu
    Shuhan Chen
    Xiao Lv
    Jian Wang
    Xuelong Hu
    [J]. Multimedia Tools and Applications, 2023, 82 : 5785 - 5801
  • [3] Guided multi-scale refinement network for camouflaged object detection
    Xu, Xiuqi
    Chen, Shuhan
    Lv, Xiao
    Wang, Jian
    Hu, Xuelong
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (04) : 5785 - 5801
  • [4] FEMRNet: Feature-enhanced multi-scale residual network for image denoising
    Xu, Xiao
    Wang, Qidong
    Guo, Lili
    Zhang, Jian
    Ding, Shifei
    [J]. APPLIED INTELLIGENCE, 2023, 53 (21) : 26027 - 26049
  • [5] FEMRNet: Feature-enhanced multi-scale residual network for image denoising
    Xiao Xu
    Qidong Wang
    Lili Guo
    Jian Zhang
    Shifei Ding
    [J]. Applied Intelligence, 2023, 53 : 26027 - 26049
  • [6] Feature-enhanced composite backbone network for object detection
    Wu, Junbao
    Meng, Hao
    Yan, Tianhao
    Yuan, Ming
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (30) : 75387 - 75405
  • [7] Multi-Scale Feature Selective Matching Network for Object Detection
    Pei, Yuanhua
    Dong, Yongsheng
    Zheng, Lintao
    Ma, Jinwen
    [J]. MATHEMATICS, 2023, 11 (12)
  • [8] A KEY FEATURE-ENHANCED NETWORK FOR REMOTE SENSING OBJECT DETECTION
    Liu, Yundong
    Dong, Yan
    Kang, Haonan
    Gao, Guangshuai
    Li, Chunlei
    Liu, Zhoufeng
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 805 - 809
  • [9] Emphasizing Boundary-Positioning and Leveraging Multi-scale Feature Fusion for Camouflaged Object Detection
    Li, Songlin
    Li, Xiuhong
    Li, Zhe
    Li, Boyuan
    Zhou, Chenyu
    Chen, Fan
    Qiu, Tianchi
    Li, Zeyu
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XII, 2024, 14436 : 508 - 519
  • [10] A Novel Multi-Scale Feature Fusion Method for Region Proposal Network in Fast Object Detection
    Liu, Gang
    Wang, Chuyi
    [J]. INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2020, 16 (03) : 132 - 145