Global Guided Cross-Modal Cross-Scale Network for RGB-D Salient Object Detection

被引:0
|
作者
Wang, Shuaihui [1 ]
Jiang, Fengyi [1 ]
Xu, Boqian [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
基金
中国国家自然科学基金;
关键词
RGB-D salient object detection; global guidance; cross-modal cross-scale fusion;
D O I
10.3390/s23167221
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
RGB-D saliency detection aims to accurately localize salient regions using the complementary information of a depth map. Global contexts carried by the deep layer are key to salient objection detection, but they are diluted when transferred to shallower layers. Besides, depth maps may contain misleading information due to the depth sensors. To tackle these issues, in this paper, we propose a new cross-modal cross-scale network for RGB-D salient object detection, where the global context information provides global guidance to boost performance in complex scenarios. First, we introduce a global guided cross-modal and cross-scale module named G(2)CMCSM to realize global guided cross-modal cross-scale fusion. Then, we employ feature refinement modules for progressive refinement in a coarse-to-fine manner. In addition, we adopt a hybrid loss function to supervise the training of G(2)CMCSM over different scales. With all these modules working together, G(2)CMCSM effectively enhances both salient object details and salient object localization. Extensive experiments on challenging benchmark datasets demonstrate that our G(2)CMCSM outperforms existing state-of-the-art methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Cross-modal refined adjacent-guided network for RGB-D salient object detection
    Bi H.
    Zhang J.
    Wu R.
    Tong Y.
    Jin W.
    [J]. Multimedia Tools and Applications, 2023, 82 (24) : 37453 - 37478
  • [2] Cross-modal hierarchical interaction network for RGB-D salient object detection
    Bi, Hongbo
    Wu, Ranwan
    Liu, Ziqi
    Zhu, Huihui
    Zhang, Cong
    Xiang, Tian -Zhu
    [J]. PATTERN RECOGNITION, 2023, 136
  • [3] A cross-modal edge-guided salient object detection for RGB-D image
    Liu, Zhengyi
    Wang, Kaixun
    Dong, Hao
    Wang, Yuan
    [J]. NEUROCOMPUTING, 2021, 454 : 168 - 177
  • [4] RGB-D salient object detection with asymmetric cross-modal fusion
    Yu, Ming
    Xing, Zhang-Hao
    Liu, Yi
    [J]. Kongzhi yu Juece/Control and Decision, 2023, 38 (09): : 2487 - 2495
  • [5] Depth Enhanced Cross-Modal Cascaded Network for RGB-D Salient Object Detection
    Zhao, Zhengyun
    Huang, Ziqing
    Chai, Xiuli
    Wang, Jun
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (01) : 361 - 384
  • [6] Cross-Modal Fusion and Progressive Decoding Network for RGB-D Salient Object Detection
    Hu, Xihang
    Sun, Fuming
    Sun, Jing
    Wang, Fasheng
    Li, Haojie
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (08) : 3067 - 3085
  • [7] Depth Enhanced Cross-Modal Cascaded Network for RGB-D Salient Object Detection
    Zhengyun Zhao
    Ziqing Huang
    Xiuli Chai
    Jun Wang
    [J]. Neural Processing Letters, 2023, 55 : 361 - 384
  • [8] Attention-guided cross-modal multiple feature aggregation network for RGB-D salient object detection
    Chen, Bojian
    Wu, Wenbin
    Li, Zhezhou
    Han, Tengfei
    Chen, Zhuolei
    Zhang, Weihao
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (01): : 643 - 669
  • [9] Disentangled Cross-Modal Transformer for RGB-D Salient Object Detection and Beyond
    Chen, Hao
    Shen, Feihong
    Ding, Ding
    Deng, Yongjian
    Li, Chao
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 1699 - 1709
  • [10] Joint Cross-Modal and Unimodal Features for RGB-D Salient Object Detection
    Huang, Nianchang
    Liu, Yi
    Zhang, Qiang
    Han, Jungong
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2428 - 2441