Aspect-level sentiment analysis based on aspect-sentence graph convolution network

被引:1
|
作者
Shang, Wenqian [1 ]
Chai, Jiazhao [1 ]
Cao, Jianxiang [1 ]
Lei, Xia [1 ]
Zhu, Haibin [2 ]
Fan, Yongkai [1 ]
Ding, Weiping [3 ]
机构
[1] Commun Univ China, State Key Lab Media Convergence & Commun, Beijing 100020, Peoples R China
[2] Nipissing Univ, Dept Comp Sci & Math, North Bay, ON P1B 8H8, Canada
[3] Nantong Univ, Sch Informat Sci & Technol, Nantong 226019, Peoples R China
基金
中国国家自然科学基金;
关键词
Aspect-level sentiment analysis; Graph convolutional neural network; Aspect words; Syntactic dependency tree; Position coding;
D O I
10.1016/j.inffus.2023.102143
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aspect-level sentiment analysis aims to identify the sentiment polarity of aspect words in sentences. The existing research methods only focus on the grammatical dependencies between words, ignoring the semantic connections between aspect words and the dependency types between words, which limits the performance of the aspect-level sentiment analysis model. Therefore, this paper proposes an aspect-sentence Graph Convolutional Networks model (ASGCN) to perceive more comprehensive semantic information. Specifically, the model consists of sentence-focused GCN (SentenceGCN) and aspects-focused GCN (AspectsGCN) sub models. In the SentenceGCN model, this paper proposes a method to calculate the adjacency matrix (As) of syntactic dependency graph, which uses the position encoding mechanism and pays attention to the influence of different dependency types on semantics, so that SentenceGCN can capture the semantic information of the whole sentence more comprehensively. In the AspectsGCN model, this paper also proposes a method to calculate the adjacency matrix (Aa) of aspect words, which models the relational graph as fully connected and gives weight to the edges between aspect words according to the position, so that the AspectsGCN can pay attention to the semantic relation between different aspect words in the sentence. The proposed model outperforms all baseline models with 86.34 % accuracy and 79.96 F1 score, which indicates that there are more advantages in perceiving semantic information in ASGCN.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Graph Convolutional Network Based on Sentiment Support for Aspect-Level Sentiment Analysis
    Gao, Ruiding
    Jiang, Lei
    Zou, Ziwei
    Li, Yuan
    Hu, Yurong
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [2] Syntactic Graph Attention Network for Aspect-Level Sentiment Analysis
    Yuan L.
    Wang J.
    Yu L.-C.
    Zhang X.
    IEEE. Trans. Artif. Intell., 2024, 1 (140-153): : 140 - 153
  • [3] Aspect-Dependent Heterogeneous Graph Convolutional Network for Aspect-Level Sentiment Analysis
    Zhang, Zebao
    Hu, Congmei
    Pan, Haiwei
    Wang, Yong
    Xu, Yuezhu
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [4] Aspect-level sentiment analysis based on semantic heterogeneous graph convolutional network
    Zeng, Yufei
    Li, Zhixin
    Chen, Zhenbin
    Ma, Huifang
    FRONTIERS OF COMPUTER SCIENCE, 2023, 17 (06)
  • [5] Aspect-level sentiment analysis based on semantic heterogeneous graph convolutional network
    Yufei ZENG
    Zhixin LI
    Zhenbin CHEN
    Huifang MA
    Frontiers of Computer Science, 2023, 17 (06) : 89 - 101
  • [6] Aspect-level sentiment analysis: A survey of graph convolutional network methods
    Phan, Huyen Trang
    Nguyen, Ngoc Thanh
    Hwang, Dosam
    INFORMATION FUSION, 2023, 91 : 149 - 172
  • [7] A Parallel Fusion Graph Convolutional Network for Aspect-Level Sentiment Analysis
    Wu, Yuxin
    Deng, Guofeng
    BIG DATA RESEARCH, 2023, 32
  • [8] Graph Attention Network with Memory Fusion for Aspect-level Sentiment Analysis
    Yuan, Li
    Wang, Jin
    Yu, Liang-Chih
    Zhang, Xuejie
    1ST CONFERENCE OF THE ASIA-PACIFIC CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 10TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (AACL-IJCNLP 2020), 2020, : 27 - 36
  • [9] Aspect-Level Sentiment Classification Based on Mixed Graph Neural Network
    Tang, Hengliang
    Yin, Qizheng
    Chang, Liangliang
    Xue, Fei
    Cao, Yang
    Computer Engineering and Applications, 59 (04): : 175 - 182
  • [10] Fusion of Capsule Networks and Graph Convolution for Dual Channel Aspect-Level Sentiment Analysis
    Liu, Yanping
    Fu, Xuefeng
    Wang, Kailiang
    Chen, Weikun
    Chen, Jun
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, NETWORK SECURITY AND COMMUNICATION TECHNOLOGY, CNSCT 2024, 2024, : 258 - 264