Contact open books with flexible pages

被引:2
|
作者
Bowden, Jonathan [1 ]
Crowley, Diarmuid [2 ,3 ]
机构
[1] Univ Regensburg, Math Fak, Regensburg, Germany
[2] Univ Melbourne, Dept Math & Stat, Parkville, Vic, Australia
[3] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
关键词
HOMOLOGY;
D O I
10.1112/blms.12791
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an elementary topological obstruction for a manifold M$M$ of dimension 2q+1 > 7$2q+1\geqslant 7$ to admit a contact open book with flexible Weinstein pages and c1(pi 2(M))=0$c_1(\pi_2(M)) = 0$: if the torsion subgroup of the q$q$-th integral homology group is non-zero, then no such contact open book exists. We achieve this by proving that a symplectomorphism of a flexible Weinstein manifold acts trivially on integral cohomology. We also produce examples of non-trivial loops of flexible contact structures using related ideas.
引用
收藏
页码:1302 / 1313
页数:12
相关论文
共 50 条
  • [1] Contact open books with exotic pages
    Burak Ozbagci
    Otto van Koert
    Archiv der Mathematik, 2015, 104 : 551 - 560
  • [2] Contact open books with exotic pages
    Ozbagci, Burak
    van Koert, Otto
    ARCHIV DER MATHEMATIK, 2015, 104 (06) : 551 - 560
  • [3] Contact 5-manifolds admitting open books with exotic pages
    Akbulut, Selman
    Yasui, Kouichi
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (06) : 1589 - 1599
  • [4] Contact 5-manifolds admitting open books with exotic pages
    Akbulut, Selman
    Yasui, Kouichi
    MATHEMATICAL RESEARCH LETTERS, 2015, 22 (06) : 1589 - 1599
  • [5] OPEN BOOKS IN CONTACT GEOMETRY
    Colin, Vincent
    ASTERISQUE, 2008, (317) : 91 - 117
  • [6] Contact surgery and supporting open books
    Avdek, Russell
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (03): : 1613 - 1660
  • [7] Open books on contact five-manifolds
    Van Koert, Otto
    ANNALES DE L INSTITUT FOURIER, 2008, 58 (01) : 139 - 157
  • [8] Invariants of contact structures from open books
    Etnyre, John B.
    Ozbagci, Burak
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (06) : 3133 - 3151
  • [9] Open books and embeddings of smooth and contact manifolds
    Nath, Arijit
    Saha, Kuldeep
    ADVANCES IN GEOMETRY, 2023, 23 (02) : 247 - 266
  • [10] Real open books and real contact structures
    Ozturk, Ferit
    Salepci, Nermin
    ADVANCES IN GEOMETRY, 2015, 15 (04) : 415 - 431