MULTIVARIATE TIME SERIES SYNTHETIC DATA GENERATION IN DIABETES CARE

被引:0
|
作者
Herrero, P. [1 ]
Zhu, T. [2 ]
Andorra, M. [1 ]
Chittajallu, S. [3 ]
机构
[1] Roche Diabet Care, Algorithms & Adv Analyt, Sant Cugat Del Valles, Spain
[2] Roche Diabet Care, Algorithms & Adv Analyt, Burgess Hill, England
[3] Roche Diabet Care, Algorithms & Adv Analyt, Indianapolis, IN USA
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
774
引用
收藏
页码:A239 / A239
页数:1
相关论文
共 50 条
  • [1] Towards Synthetic Multivariate Time Series Generation for Flare Forecasting
    Chen, Yang
    Kempton, Dustin J.
    Ahmadzadeh, Azim
    Angryk, Rafal A.
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING (ICAISC 2021), PT I, 2021, 12854 : 296 - 307
  • [2] Visual Analytics of Multivariate Intensive Care Time Series Data
    Brich, N.
    Schulz, C.
    Peter, J.
    Klingert, W.
    Schenk, M.
    Weiskopf, D.
    Krone, M.
    COMPUTER GRAPHICS FORUM, 2022, 41 (06) : 273 - 286
  • [3] CGAN-based synthetic multivariate time-series generation: a solution to data scarcity in solar flare forecasting
    Chen, Yang
    Kempton, Dustin J.
    Ahmadzadeh, Azim
    Wen, Junzhi
    Ji, Anli
    Angryk, Rafal A.
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (16): : 13339 - 13353
  • [4] CGAN-based synthetic multivariate time-series generation: a solution to data scarcity in solar flare forecasting
    Yang Chen
    Dustin J. Kempton
    Azim Ahmadzadeh
    Junzhi Wen
    Anli Ji
    Rafal A. Angryk
    Neural Computing and Applications, 2022, 34 : 13339 - 13353
  • [5] Generation of synthetic multi-resolution time series load data
    Pinceti, Andrea
    Sankar, Lalitha
    Kosut, Oliver
    IET SMART GRID, 2023, 6 (05) : 492 - 502
  • [6] Transfer Learning for Time Series Classification Using Synthetic Data Generation
    Rotem, Yarden
    Shimoni, Nathaniel
    Rokach, Lior
    Shapira, Bracha
    CYBER SECURITY, CRYPTOLOGY, AND MACHINE LEARNING, 2022, 13301 : 232 - 246
  • [7] Generating Multivariate Synthetic Time Series Data for Absent Sensors from Correlated Sources
    Banuelos, Julian Jeronimo
    Sigg, Stephan
    He, Jiayuan
    Salim, Flora
    Costa-Requena, Jose
    PROCEEDINGS OF THE 2024 2ND INTERNATIONAL WORKSHOP ON NETWORKED AI SYSTEMS, NETAISYS 2024, 2024, : 19 - 24
  • [8] Synthetic metocean time series generation for offshore operability and design based on multivariate Markov model
    De Masi, Giulia
    Bruschi, Roberto
    Drago, Michele
    OCEANS 2015 - GENOVA, 2015,
  • [9] Generative Adversarial Network for Synthetic Time Series Data Generation in Smart Grids
    Zhang, Chi
    Kuppannagari, Sanmukh R.
    Kannan, Rajgopal
    Prasanna, Viktor K.
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2018,
  • [10] Topological Data Analysis for Multivariate Time Series Data
    El-Yaagoubi, Anass B.
    Chung, Moo K.
    Ombao, Hernando
    ENTROPY, 2023, 25 (11)