Necessary and Sufficient Optimality Conditions for Non-regular Problems

被引:0
|
作者
Vivanco-Orellana, V. [1 ]
Osuna-Gomez, R. [2 ]
Rojas-Medar, M. A. [3 ,4 ]
机构
[1] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Concepcion, Chile
[2] Univ Seville, Fac Matemat, Dept Estadist Invest Operat, Seville, Spain
[3] Univ Tarapaca, Dept Matemat, Arica, Chile
[4] Univ Tarapaca, Dept Matemat, Casilla 7D, Arica, Chile
关键词
Dubovitskii-Milyutin formalism; necessary and sufficient optimality conditions; non-regular optimization problem; tangent and feasible cones of second-order; EXTREMUM PROBLEMS;
D O I
10.1080/01630563.2023.2235614
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive new necessary and sufficient optimality conditions for optimization problems with multi-equality and inequality constraints through the Dubovitskii-Milyutin formalism, characterizing the feasible and tangent directions cones in a neighborhood of a non-regular point. We also establish conditions of 2-regularity under which necessary optimality conditions are non-degenerate. These conditions apply when the phenomenon of non-regularity (or abnormality) take place. In addition examples that illustrate our results are presented.
引用
收藏
页码:1228 / 1250
页数:23
相关论文
共 50 条