Modeling Catalyst-Free Growth of III-V Nanowires: Empirical and Rigorous Approaches

被引:4
|
作者
Dubrovskii, Vladimir G. [1 ]
机构
[1] St Petersburg State Univ, Fac Phys, Univ Skaya Emb 13B, St Petersburg 199034, Russia
关键词
III-V nanowires; selective area growth; radial growth; adatom diffusion; nanowire length and radius; modeling; MOLECULAR-BEAM EPITAXY; SELECTIVE-AREA; HIGHLY UNIFORM; NUCLEATION; SUBSTRATE; EVOLUTION; LENGTH; GAN;
D O I
10.3390/nano13071253
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Catalyst-free growth of III-V and III-nitride nanowires (NWs) by the self-induced nucleation mechanism or selective area growth (SAG) on different substrates, including Si, show great promise for monolithic integration of III-V optoelectronics with Si electronic platform. The morphological design of NW ensembles requires advanced growth modeling, which is much less developed for catalyst-free NWs compared to vapor-liquid-solid (VLS) NWs of the same materials. Herein, we present an empirical approach for modeling simultaneous axial and radial growths of untapered catalyst-free III-V NWs and compare it to the rigorous approach based on the stationary diffusion equations for different populations of group III adatoms. We study in detail the step flow occurring simultaneously on the NW sidewalls and top and derive the general laws governing the evolution of NW length and radius versus the growth parameters. The rigorous approach is reduced to the empirical equations in particular cases. A good correlation of the model with the data on the growth kinetics of SAG GaAs NWs and self-induced GaN NWs obtained by different epitaxy techniques is demonstrated. Overall, the developed theory provides a basis for the growth modeling of catalyst-free NWs and can be further extended to more complex NW morphologies.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Catalyst-Free, III-V Nanowire Photovoltaics
    Davies, D. G.
    Lambert, N.
    Fry, P. W.
    Foster, A.
    Krysa, A. B.
    Wilson, L. R.
    7TH INTERNATIONAL CONFERENCE ON LOW DIMENSIONAL STRUCTURES AND DEVICES (LDSD 2011), 2014, 1598 : 162 - 165
  • [2] MBE-VLS growth of catalyst-free III-V axial heterostructure nanowires on (111)Si substrates
    Paek, Jihyun
    Yamaguchi, Masahito
    Amano, Hiroshi
    JOURNAL OF CRYSTAL GROWTH, 2011, 323 (01) : 315 - 318
  • [3] Evolution of the Length and Radius of Catalyst-Free III-V Nanowires Grown by Selective Area Epitaxy
    Dubrovskii, Vladimir G.
    ACS OMEGA, 2019, 4 (05): : 8400 - 8405
  • [4] Modeling of Catalyst-free Growth Process of ZnO Nanowires
    Kong, Xiangcheng
    Wei, Chuang
    Zhu, Yong
    Cohen, Paul
    Dong, Jingyan
    46TH SME NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE, NAMRC 46, 2018, 26 : 349 - 358
  • [5] Catalyst-free growth of GaN nanowires
    K. A. Bertness
    N. A. Sanford
    J. M. Barker
    J. B. Schlager
    A. Roshko
    A. V. Davydov
    I. Levin
    Journal of Electronic Materials, 2006, 35 : 576 - 580
  • [6] Catalyst-free growth of GaN nanowires
    Bertness, KA
    Sanford, NA
    Barker, JM
    Schlager, JB
    Roshko, A
    Davydov, AV
    Levin, I
    JOURNAL OF ELECTRONIC MATERIALS, 2006, 35 (04) : 576 - 580
  • [7] Modeling Growth, Morphology, and Composition of Ternary III-V Nanowires
    Fakhr, Ahmed
    Haddara, Yaser M.
    LaPierre, Ray R.
    2013 SAUDI INTERNATIONAL ELECTRONICS, COMMUNICATIONS AND PHOTONICS CONFERENCE (SIECPC), 2013,
  • [8] An Overview of Modeling Approaches for Compositional Control in III-V Ternary Nanowires
    Leshchenko, Egor D.
    Dubrovskii, Vladimir G.
    NANOMATERIALS, 2023, 13 (10)
  • [10] Catalyst-free growth of lateral InAs nanowires
    Wang, Hailing
    Wei, Wenqi
    Wang, Jianhuan
    Feng, Qi
    Wu, Shiyao
    Yang, Huaixin
    Xu, Xiulai
    Wang, Ting
    Zhang, Jianjun
    JOURNAL OF CRYSTAL GROWTH, 2018, 498 : 209 - 213