ODSPC: deep learning-based 3D object detection using semantic point cloud

被引:1
|
作者
Song, Shuang [1 ]
Huang, Tengchao [1 ]
Zhu, Qingyuan [1 ]
Hu, Huosheng [2 ]
机构
[1] Xiamen Univ, Dept Mech & Elect Engn, Xiamen 361005, Peoples R China
[2] Univ Essex, Sch Comp Sci & Elect Engn, Colchester CO4 3SQ, Essex, England
来源
VISUAL COMPUTER | 2024年 / 40卷 / 02期
基金
中国国家自然科学基金;
关键词
Object detection; Semantic segmentation; Point cloud classification; Fused data; Extended Kalman filter; TRACKING;
D O I
10.1007/s00371-023-02820-2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Three-dimensional object detection plays a key role in autonomous driving, which becomes extremely challenging in occlusion situations. This paper presents a novel multimodal 3D object detection framework which fuses visual semantic information and depth point cloud information to accurately detect targets with distant object features and occlusion situations. The framework consists of the four steps. Firstly, an improved semantic segmentation network is used to extract semantic information of objects containing similar features. Secondly, semantic images and point clouds are combined to generate pixel-level fusion data so that the semantic information and training capability of sparse and far-point clouds can be improved. Thirdly, a deep learning-based point cloud classification network is used for training of the fused data to output accurate detection frames. Fourthly, an extended Kalman filter is incorporated into point cloud prediction for image-based object detection to further enhance the robustness of object detection. Both Cityscapes and KITTI datasets are used in ablation study and experiments to validate the effectiveness of the proposed framework.
引用
收藏
页码:849 / 863
页数:15
相关论文
共 50 条
  • [1] ODSPC: deep learning-based 3D object detection using semantic point cloud
    Shuang Song
    Tengchao Huang
    Qingyuan Zhu
    Huosheng Hu
    The Visual Computer, 2024, 40 (2) : 849 - 863
  • [2] Research of Deep Learning-Based Semantic Segmentation for 3D Point Cloud
    Wang, Tao
    Wang, Wenju
    Cai, Yu
    Computer Engineering and Applications, 2024, 57 (23) : 18 - 26
  • [3] 3D Object Detection from Point Cloud Based on Deep Learning
    Hao, Ning
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [4] Improving Point Cloud Semantic Segmentation by Learning 3D Object Detection
    Unal, Ozan
    Van Gool, Luc
    Dai, Dengxin
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2949 - 2958
  • [5] Transfer Learning Based Semantic Segmentation for 3D Object Detection from Point Cloud
    Imad, Muhammad
    Doukhi, Oualid
    Lee, Deok-Jin
    SENSORS, 2021, 21 (12)
  • [6] Multi-view semantic learning network for point cloud based 3D object detection
    Yang, Yongguang
    Chen, Feng
    Wu, Fei
    Zeng, Deliang
    Ji, Yi-mu
    Jing, Xiao-Yuan
    NEUROCOMPUTING, 2020, 397 (397) : 477 - 485
  • [7] DEEP LEARNING FOR SEMANTIC SEGMENTATION OF 3D POINT CLOUD
    Malinverni, E. S.
    Pierdicca, R.
    Paolanti, M.
    Martini, M.
    Morbidoni, C.
    Matrone, F.
    Lingua, A.
    27TH CIPA INTERNATIONAL SYMPOSIUM: DOCUMENTING THE PAST FOR A BETTER FUTURE, 2019, 42-2 (W15): : 735 - 742
  • [8] Deep Learning Based Semantic Labelling of 3D Point Cloud in Visual SLAM
    Qi, Xuxiang
    Yang, Shaowu
    Yan, Yuejin
    3RD INTERNATIONAL CONFERENCE ON AUTOMATION, CONTROL AND ROBOTICS ENGINEERING (CACRE 2018), 2018, 428
  • [9] Deep Learning-based 3D Object Detection Using LiDAR and Image Data Fusion
    Bharadhwaj, Bizzam Murali
    Nair, Binoy B.
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [10] Survey on deep learning-based 3D object detection in autonomous driving
    Liang, Zhenming
    Huang, Yingping
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (04) : 761 - 776