Automated deep learning-based AMD detection and staging in real-world OCT datasets (PINNACLE study report 5)

被引:9
|
作者
Leingang, Oliver [1 ]
Riedl, Sophie [1 ]
Mai, Julia [1 ]
Reiter, Gregor S. [1 ]
Faustmann, Georg [1 ,2 ]
Fuchs, Philipp [1 ]
Scholl, Hendrik P. N. [3 ,4 ]
Sivaprasad, Sobha [5 ]
Rueckert, Daniel [6 ,7 ]
Lotery, Andrew [8 ]
Schmidt-Erfurth, Ursula [1 ]
Bogunovic, Hrvoje [1 ,2 ]
机构
[1] Med Univ Vienna, Dept Ophthalmol & Optometry, Vienna, Austria
[2] Med Univ Vienna, Dept Ophthalmol & Optometry, Christian Doppler Lab Artificial Intelligence Ret, Vienna, Austria
[3] Inst Mol & Clin Ophthalmol Basel, Basel, Switzerland
[4] Univ Basel, Dept Ophthalmol, Basel, Switzerland
[5] Moorfields Eye Hosp NHS Fdn Trust, NIHR Moorfields Biomed Res Ctr, London, England
[6] Imperial Coll London, BioMedIA, London, England
[7] Tech Univ Munich, Inst AI & Informat Med, Klinikum Rechts Isar, Munich, Germany
[8] Univ Southampton, Clin & Expt Sci, Fac Med, Southampton, Hants, England
来源
SCIENTIFIC REPORTS | 2023年 / 13卷 / 01期
基金
英国惠康基金; 奥地利科学基金会;
关键词
MACULAR DEGENERATION; GEOGRAPHIC ATROPHY; IMAGING BIOMARKERS; CLASSIFICATION; FLUID; SEGMENTATION; DROPOUT; DEVICES;
D O I
10.1038/s41598-023-46626-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Real-world retinal optical coherence tomography (OCT) scans are available in abundance in primary and secondary eye care centres. They contain a wealth of information to be analyzed in retrospective studies. The associated electronic health records alone are often not enough to generate a high-quality dataset for clinical, statistical, and machine learning analysis. We have developed a deep learning-based age-related macular degeneration (AMD) stage classifier, to efficiently identify the first onset of early/intermediate (iAMD), atrophic (GA), and neovascular (nAMD) stage of AMD in retrospective data. We trained a two-stage convolutional neural network to classify macula-centered 3D volumes from Topcon OCT images into 4 classes: Normal, iAMD, GA and nAMD. In the first stage, a 2D ResNet50 is trained to identify the disease categories on the individual OCT B-scans while in the second stage, four smaller models (ResNets) use the concatenated B-scan-wise output from the first stage to classify the entire OCT volume. Classification uncertainty estimates are generated with Monte-Carlo dropout at inference time. The model was trained on a real-world OCT dataset, 3765 scans of 1849 eyes, and extensively evaluated, where it reached an average ROC-AUC of 0.94 in a real-world test set.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Automated deep learning-based AMD detection and staging in real-world OCT datasets (PINNACLE study report 5)
    Oliver Leingang
    Sophie Riedl
    Julia Mai
    Gregor S. Reiter
    Georg Faustmann
    Philipp Fuchs
    Hendrik P. N. Scholl
    Sobha Sivaprasad
    Daniel Rueckert
    Andrew Lotery
    Ursula Schmidt-Erfurth
    Hrvoje Bogunović
    Scientific Reports, 13 (1)
  • [2] Automated deep learning-based AMD stage detection in real-world OCT datasets
    Leingang, Oliver
    Bogunovic, Hrvoje
    Riedl, Sophie
    Chakravarty, Arunava
    Menten, Martin Joseph
    Holland, Robbie
    Traber, Ghislaine L.
    Fritsche, Lars
    Prevost, Toby
    Scholl, Hendrik P.
    Rueckert, Daniel
    Sivaprasad, Sobha
    Lotery, Andrew J.
    Schmidt-Erfurth, Ursula
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [3] Comparison of a human versus deep learning-based evaluation of fluid change in real-world OCT images of neovascular AMD
    Michl, Martin
    Gerendas, Bianca S.
    Seeboeck, Philipp
    de Llano, Elisa
    Gruber, Anastasiia
    Goldbach, Felix
    Mylonas, Georgios
    Leingang, Oliver
    Buehl, Wolf
    Sacu, Stefan
    Bogunovic, Hrvoje
    Schmidt-Erfurth, Ursula
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [4] Deep learning-based detection of advanced AMD on retinal OCT from the UK Biobank dataset on behalf of the PINNACLE Consortium
    Leingang, Oliver
    Bogunovic, Hrvoje
    Reiter, Gregor Sebastian
    Chakravarty, Arunava
    Menten, Martin Joseph
    Holland, Robert
    Fritsche, Lars G.
    Scholl, Hendrik P.
    Rueckert, Daniel
    Sivaprasad, Sobha
    Lotery, Andrew J.
    Schmidt-Erfurth, Ursula
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [5] Deep learning-based automated fluid quantification in clinical routine OCT images in neovascular AMD
    Gerendas, Bianca S. S.
    Sadeghipour, Amir
    Michl, Martin
    Alten, Thomas
    Buehl, Wolf
    Sacu, Stefan
    Bogunovic, Hrvoje
    Schmidt-Erfurth, Ursula
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [6] Deep learning-based automated fluid quantification in clinical routine OCT images in neovascular AMD over 5 years
    Gerendas, Bianca
    Sadeghipour, Amir
    Michl, Martin
    Goldbach, Felix
    Mylonas, Georgios
    Alten, Thomas
    Leingang, Oliver
    Sacu, Stefan
    Bogunovic, Hrvoje
    Schmidt-Erfurth, Ursula
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)
  • [7] Deep learning-based real-world object detection and improved anomaly detection for surveillance videos
    Ragedhaksha
    Darshini
    Shahil
    Arunnehru J.
    Materials Today: Proceedings, 2023, 80 : 2911 - 2916
  • [8] A Comprehensive Review of Deep Learning-Based Real-World Image Restoration
    Zhai, Lujun
    Wang, Yonghui
    Cui, Suxia
    Zhou, Yu
    IEEE ACCESS, 2023, 11 : 21049 - 21067
  • [9] Deep Learning-Based Clustering of OCT Images for Biomarker Discovery in Age-Related Macular Degeneration (PINNACLE Study Report 4)
    Holland, Robbie
    Kaye, Rebecca
    Hagag, Ahmed M.
    Leingang, Oliver
    Taylor, Thomas R. P.
    Bogunovic, Hrvoje
    Schmidt-Erfurth, Ursula
    Scholl, Hendrik P. N.
    Rueckert, Daniel
    Lotery, Andrew J.
    Sivaprasad, Sobha
    Menten, Martin J.
    OPHTHALMOLOGY SCIENCE, 2024, 4 (06):
  • [10] Deep Learning for Glaucoma Detection and Identification of Novel Diagnostic Areas in Diverse Real-World Datasets
    Noury, Erfan
    Mannil, Suria S.
    Chang, Robert T.
    Ran, An Ran
    Cheung, Carol Y.
    Thapa, Suman S.
    Rao, Harsha L.
    Dasari, Srilakshmi
    Riyazuddin, Mohammed
    Chang, Dolly
    Nagaraj, Sriharsha
    Tham, Clement C.
    Zadeh, Reza
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2022, 11 (05):