On the generalized Fourier transform

被引:0
|
作者
Abreu-Blaya, Ricardo [1 ,2 ]
Rodriguez, Jose M. [3 ,4 ]
Sigarreta, Jose M. [1 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Guerrero, Mexico
[2] Univ UTE, Quito, Ecuador
[3] Univ Carlos III Madrid, Dept Matemat, Madrid, Spain
[4] Univ Carlos III Madrid, Dept Dematemat, Ave Univ 30, Leganes 28911, Madrid, Spain
关键词
fractional derivative; generalized Fourier transform; DEFINITION; MODEL;
D O I
10.1002/mma.9471
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the theory of a generalized Fourier transform in order to solve differential equations with a generalized fractional derivative, and we state its main properties. In particular, we obtain the new corresponding convolution, inverse and Plancherel formulas, and Hausdorff-Young type inequality. We show that this generalized Fourier transform is useful in the study of several fractional differential equations (both ordinary and partial differential equations).
引用
收藏
页码:16709 / 16733
页数:25
相关论文
共 50 条
  • [1] The generalized Fourier transform
    不详
    [J]. SCATTERING THEORY: SOME OLD AND NEW PROBLEMS, 2000, 1735 : 40 - 46
  • [2] A generalized Fourier transform
    Watanabe, S
    [J]. PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 103 - 113
  • [3] GROUPS OF A GENERALIZED FOURIER TRANSFORM
    PREISEND.RW
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (05): : 786 - &
  • [4] FOURIER TRANSFORM OF GENERALIZED FUNCTIONS
    FISHER, B
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 70 (JUL): : 49 - &
  • [5] THE GENERALIZED FRACTIONAL FOURIER TRANSFORM
    Pei, Soo-Chang
    Liu, Chun-Lin
    Lai, Yun-Chiu
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3705 - 3708
  • [6] Riesz Potentials for the κ-Generalized Fourier Transform
    Oukili, Sara
    Sifi, Mohamed
    [J]. JOURNAL OF LIE THEORY, 2021, 31 (01) : 287 - 300
  • [7] Generalized fourier transform and its applications
    S. V. Panyushkin
    [J]. Mathematical Notes, 2006, 79 : 537 - 550
  • [8] A generalized Fourier transform and its applications
    Watanabe, S
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2002, 13 (04) : 321 - 344
  • [9] Generalized Sliding Discrete Fourier Transform
    Murakami, Takahiro
    Ishida, Yoshihisa
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (01): : 338 - 345
  • [10] Generalized Fourier transform and its applications
    Panyushkin, SV
    [J]. MATHEMATICAL NOTES, 2006, 79 (3-4) : 537 - 550