Discovery of the High-Entropy Carbide Ceramic Topological Superconductor Candidate (Ti0.2Zr0.2Nb0.2Hf0.2Ta0.2)C

被引:11
|
作者
Zeng, Lingyong [1 ]
Wang, Zequan [2 ]
Song, Jing [3 ]
Lin, Gaoting [4 ]
Guo, Ruixin [5 ,6 ]
Luo, Si-Chun [7 ]
Guo, Shu [5 ,6 ]
Li, Kuan [1 ]
Yu, Peifeng [1 ]
Zhang, Chao [1 ]
Guo, Wei-Ming [7 ]
Ma, Jie [4 ,8 ,9 ]
Hou, Yusheng [2 ]
Luo, Huixia [1 ]
机构
[1] Sun Yat Sen Univ, Sch Mat Sci & Engn, State Key Lab Optoelect Mat & Technol, Guangdong Prov Key Lab Magnetoelectr Phys & Device, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Ctr Neutron Sci & Technol, Sch Phys, Guangdong Prov Key Lab Magnetoelectr Phys & Device, Guangzhou 510275, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Phys & Astron, Key Lab Artificial Struct & Quantum Control, Shanghai 200240, Peoples R China
[5] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[6] Int Quantum Acad, Shenzhen 518048, Peoples R China
[7] Guangdong Univ Technol, Sch Electromech Engn, Guangzhou 510006, Peoples R China
[8] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Peoples R China
[9] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Hankou Rd 22, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
high pressure; high-entropy ceramic; superconductivity; topological superconductor; (TANBHFTIZR)C; TEMPERATURE; DENSITY; ALLOYS;
D O I
10.1002/adfm.202301929
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-entropy ceramics (HECs) are solid solutions of inorganic compounds with one or more Wyckoff sites shared by equal or near-equal atomic ratios of multi-principal elements. Material design and property tailoring possibilities emerge from this new class of materials. Herein, the discovery of superconductivity 2.35 K and topological properties in the (Ti0.2Zr0.2Nb0.2Hf0.2Ta0.2)C high-entropy carbide ceramic (HECC) is reported, which is not observed before in any of the investigated HECC. Density functional theory calculations show that six type-II Dirac points exist in (Ti0.2Zr0.2Nb0.2Hf0.2Ta0.2)C, which mainly contributed from the t(2g) orbitals of transition metals and the p orbitals of C. Due to the stability of the structure, robust superconductivity (SC) under pressure in this HEC superconductor is also observed. This study expands the physical properties of HECs, which may become a new material platform for SC research, especially for studying the coupling between SC and topological physics.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Influence of novel carbon sources on microstructure and properties of (Ti0.2Zr0.2Hf0.2Ta0.2Nb0.2)C high-entropy carbide ceramic
    Li, Saisai
    Wu, Qianfang
    Zhan, Jie
    Chen, Ruoyu
    Mao, Aiqin
    Zheng, Cuihong
    Wen, Haiming
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (04) : 1890 - 1897
  • [2] Diffusion bonding of (Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)C high-entropy ceramic with metallic Ni foil
    Mu, R. J.
    Yang, Z. W.
    Niu, S. Y.
    Sun, K. B.
    Wang, Y.
    Wang, D. P.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (15) : 7478 - 7487
  • [3] Oxidation behavior of high-entropy carbide (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C at 1400-1600 °C
    Wang, Haoxuan
    Han, Xu
    Liu, Wen
    Wang, Yiguang
    CERAMICS INTERNATIONAL, 2021, 47 (08) : 10848 - 10854
  • [4] Pressure-driven grain fusion and mechanical properties improvement of high-entropy (Ti0.2Zr0.2Nb0.2Hf0.2Ta0.2)C ceramics
    Chen, Wang
    Shen, Pengfei
    Li, Wei
    Ma, Shuailing
    Lian, Min
    Wei, Xinmiao
    Dan, Yaqian
    Zhao, Xingbin
    Qi, Mengyao
    Cui, Tian
    Riedel, Ralf
    MATERIALS & DESIGN, 2025, 253
  • [5] Unveiling the Transporting Mechanism of (Ti0.2Zr0.2Nb0.2Hf0.2Ta0.2)C at Room Temperature
    Liu, Tao
    Lei, Liwen
    Zhang, Jinyong
    Li, Neng
    CRYSTALS, 2023, 13 (04)
  • [6] Mechanical properties and deformation mechanisms of (Ti0.2Zr0.2Nb0.2Hf0.2Ta0.2)C high-entropy ceramics characterized by nanoindentation and scratch tests
    Jin, Xiaochao
    Hou, Cheng
    Zhao, Yuxiang
    Wang, Zhuoran
    Wang, Jierui
    Fan, Xueling
    CERAMICS INTERNATIONAL, 2022, 48 (23) : 35445 - 35451
  • [7] (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity
    Cui, Bai (bcui3@unl.edu), 1600, Blackwell Publishing Inc. (101):
  • [8] (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity
    Yan, Xueliang
    Constantin, Loic
    Lu, Yongfeng
    Silvain, Jean-Francois
    Nastasi, Michael
    Cui, Bai
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2018, 101 (10) : 4486 - 4491
  • [9] Exploring radiation damage in (Hf0.2Zr0.2Ta0.2Ti0.2Nb0.2)C high-entropy carbide ceramic: Integrating experimental and atomistic investigations
    Zhang, Gaowei
    Daghbouj, Nabil
    Almotasem, A. T.
    Fang, Zhongqiang
    Wang, Tao
    Zhang, Jian
    Zhang, Tongming
    Li, Jun
    Zhou, Junjun
    Xu, Shuai
    Wang, Renda
    Wu, Lu
    Ge, Fangfang
    Polcar, Tomas
    Han, Wentuo
    Li, Bingsheng
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2024, 123
  • [10] First-principles study, fabrication, and characterization of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic
    Ye, Beilin
    Wen, Tongqi
    Huang, Kehan
    Wang, Cai-Zhuang
    Chu, Yanhui
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (07) : 4344 - 4352