Bayesian uncertainty quantification of local volatility model

被引:0
|
作者
Yin, Kai [1 ]
Mondal, Anirban [1 ]
机构
[1] Case Western Reserve Univ, Dept Math Appl Math & Stat, Cleveland, OH 44106 USA
来源
关键词
Local volatility; Bayesian statistics; uncertainty quantification; Karhunen-Loeve expansion; TIKHONOV REGULARIZATION; INVERSE PROBLEM; OPTIONS; CALIBRATION; ASSETS;
D O I
10.1007/s13571-022-00286-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Local volatility is an important quantity in option pricing, portfolio hedging, and risk management. It is not directly observable from the market; hence calibrations of local volatility models are necessary using observed market data. Unlike most existing point-estimate methods, we cast the large-scale nonlinear inverse problem into the Bayesian framework, yielding a posterior distribution of the local volatility, which naturally quantifies its uncertainty. This extra uncertainty information enables traders and risk managers to make better decisions. To alleviate the computational cost, we apply Karhunen-Laeve expansion to reduce the dimensionality of the Gaussian Process prior for local volatility. A modified two-stage adaptive Metropolis algorithm is applied to sample the posterior probability distribution, which further reduces computational burdens caused by repetitive numerical forward option pricing model solver and time of heuristic tuning. We demonstrate our methodology with both synthetic and market data.
引用
收藏
页码:290 / 324
页数:35
相关论文
共 50 条
  • [1] Bayesian uncertainty quantification of local volatility model
    Kai Yin
    Anirban Mondal
    [J]. Sankhya B, 2023, 85 : 290 - 324
  • [2] On the Quantification of Model Uncertainty: A Bayesian Perspective
    Kaplan, David
    [J]. PSYCHOMETRIKA, 2021, 86 (01) : 215 - 238
  • [3] A Bayesian approach for quantification of model uncertainty
    Park, Inseok
    Amarchinta, Hemanth K.
    Grandhi, Ramana V.
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2010, 95 (07) : 777 - 785
  • [4] On the Quantification of Model Uncertainty: A Bayesian Perspective
    David Kaplan
    [J]. Psychometrika, 2021, 86 : 215 - 238
  • [5] Sparsifying priors for Bayesian uncertainty quantification in model discovery
    Hirsh, Seth M.
    Barajas-Solano, David A.
    Kutz, J. Nathan
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (02):
  • [6] Bayesian estimation of an extended local scale stochastic volatility model
    Deschamps, Philippe J.
    [J]. JOURNAL OF ECONOMETRICS, 2011, 162 (02) : 369 - 382
  • [7] Adaptive Model Refinement Approach for Bayesian Uncertainty Quantification in Turbulence Model
    Zeng, Fanzhi
    Zhang, Wei
    Li, Jinping
    Zhang, Tianxin
    Yan, Chao
    [J]. AIAA JOURNAL, 2022, 60 (06) : 3502 - 3516
  • [8] Uncertainty quantification in Bayesian inversion
    Stuart, Andrew M.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL IV, 2014, : 1145 - 1162
  • [9] Uncertainty Quantification for Bayesian Optimization
    Tuo, Rui
    Wang, Wenjia
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [10] UNCERTAINTY QUANTIFICATION FOR BAYESIAN CART
    Castillo, Ismael
    Rockova, Veronika
    [J]. ANNALS OF STATISTICS, 2021, 49 (06): : 3482 - 3509