Extension of the Bayesian searches for anisotropic stochastic gravitational-wave background with nontensorial polarizations

被引:0
|
作者
Tsukada, Leo [1 ,2 ]
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[2] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
BLACK-HOLE BINARIES; GENERAL-RELATIVITY; RADIATION; INFERENCE; LIMITS; BILBY; TESTS;
D O I
10.1103/PhysRevD.108.124042
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The recent announcement of strong evidence for a stochastic gravitational-wave background (SGWB) by various pulsar timing array collaborations has highlighted this signal as a promising candidate for future observations. Despite its nondetection by ground-based detectors such as Advanced LIGO and Advanced Virgo, Callister et al. [Phys. Rev. X 7, 041058 (2017)] developed a Bayesian formalism to search for an isotropic SGWB with nontensorial polarizations, imposing constraints on signal amplitude in those components that violate general relativity using LIGO's data. Since our ultimate aim is to estimate the spatial distribution of gravitational-wave sources, we have extended this existing method to allow for anisotropic components in signal models. We then examined the potential benefits from including these additional components. Using injection campaigns, we found that introducing anisotropic components into a signal model led to more significant identification of the signal itself and violations of general relativity. Moreover, the results of our Bayesian parameter estimation suggested that anisotropic components aid in breaking down degeneracies between different polarization components, allowing us to infer model parameters more precisely than through an isotropic analysis. In contrast, constraints on signal amplitude remained comparable in the absence of such a signal. Although these results might depend on the assumed source distribution on the sky, such as the Galactic plane, the formalism presented in this work has laid a foundation for establishing a generalized Bayesian analysis for an SGWB, including its anisotropies and nontensorial polarizations.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Parameter Estimation in Searches for the Stochastic Gravitational-Wave Background
    Mandic, V.
    Thrane, E.
    Giampanis, S.
    Regimbau, T.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (17)
  • [2] Probing nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers
    Nishizawa, Atsushi
    Taruya, Atsushi
    Hayama, Kazuhiro
    Kawamura, Seiji
    Sakagami, Masa-aki
    [J]. PHYSICAL REVIEW D, 2009, 79 (08):
  • [3] Bayesian analysis of the stochastic gravitational-wave background with alternative polarizations for space-borne detectors
    Hu, Yu
    Wang, Pan-Pan
    Tan, Yu-Jie
    Shao, Cheng-Gang
    [J]. PHYSICAL REVIEW D, 2023, 107 (02)
  • [4] Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Afrough, M.
    Agarwal, B.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allen, G.
    Allocca, A.
    Altin, P. A.
    Amato, A.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Angelova, S., V
    Antier, S.
    Appert, S.
    Arai, K.
    Araya, M. C.
    Areeda, J. S.
    Arnaud, N.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Atallah, D., V
    Aufmuth, P.
    Aulbert, C.
    AultONeal, K.
    Austin, C.
    Avila-Alvarez, A.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    Bae, S.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (20)
  • [5] Angular resolution of the search for anisotropic stochastic gravitational-wave background with terrestrial gravitational-wave detectors
    Floden, Erik
    Mandic, Vuk
    Matas, Andrew
    Tsukada, Leo
    [J]. PHYSICAL REVIEW D, 2022, 106 (02)
  • [6] Bayesian parameter estimation for targeted anisotropic gravitational-wave background
    Tsukada, Leo
    Jaraba, Santiago
    Agarwal, Deepali
    Floden, Erik
    [J]. PHYSICAL REVIEW D, 2023, 107 (02)
  • [7] Fisher formalism for anisotropic gravitational-wave background searches with pulsar timing arrays
    Ali-Haimoud, Yacine
    Smith, Tristan L.
    Mingarelli, Chiara M. F.
    [J]. PHYSICAL REVIEW D, 2020, 102 (12)
  • [8] Stochastic gravitational-wave background searches and constraints on neutron-star ellipticity
    De Lillo, Federico
    Suresh, Jishnu
    Miller, Andrew L.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 513 (01) : 1105 - 1114
  • [9] Anisotropies in the gravitational-wave stochastic background
    Oelmez, S.
    Mandic, V.
    Siemens, X.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2012, (07):
  • [10] Insights into searches for anisotropies in the nanohertz gravitational-wave background
    Ali-Haimoud, Yacine
    Smith, Tristan L.
    Mingarelli, Chiara M. F.
    [J]. PHYSICAL REVIEW D, 2021, 103 (04)