Ozone Disinfection for Elimination of Bacteria and Degradation of SARS-CoV2 RNA for Medical Environments

被引:5
|
作者
Westover, Craig [1 ,2 ]
Rahmatulloev, Savlatjon [1 ,2 ]
Danko, David [3 ]
Afshin, Evan E. E. [1 ,2 ,4 ]
O'Hara, Niamh B. B. [3 ]
Ounit, Rachid [5 ]
Bezdan, Daniela [6 ,7 ,8 ]
Mason, Christopher E. E. [1 ,2 ,3 ,9 ]
机构
[1] Weill Cornell Med Coll, Dept Physiol & Biophys, New York, NY 10065 USA
[2] Weill Cornell Med Coll, HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud, New York, NY 10065 USA
[3] Cornell Tech, Jacobs Technion Cornell Inst, New York, NY 10044 USA
[4] Weill Cornell Med, World Quant Initiat Quantitat Predict, New York, NY 10021 USA
[5] Univ Calif Riverside, Dept Comp Sci & Engn, Riverside, CA 92521 USA
[6] Univ Tubingen, Inst Med Genet & Appl Genom, D-72074 Tubingen, Germany
[7] Univ Tubingen, NGS Competence Ctr Tubingen NCCT, D-72074 Tubingen, Germany
[8] Yuri GmbH, D-88074 Meckenbeuren, Germany
[9] Feil Family Brain & Mind Res Inst, New York, NY 10065 USA
基金
美国国家卫生研究院;
关键词
microbiome; SARS-CoV-2; hospital-acquired infections; CFU; ozone; disinfection; RNA degradation; ANTIBIOTIC-RESISTANT BACTERIA; INACTIVATION; GENES; HEAT;
D O I
10.3390/genes14010085
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Pathogenic bacteria and viruses in medical environments can lead to treatment complications and hospital-acquired infections. Current disinfection protocols do not address hard-to-access areas or may be beyond line-of-sight treatment, such as with ultraviolet radiation. The COVID-19 pandemic further underscores the demand for reliable and effective disinfection methods to sterilize a wide array of surfaces and to keep up with the supply of personal protective equipment (PPE). We tested the efficacy of Sani Sport ozone devices to treat hospital equipment and surfaces for killing Escherichia coli, Enterococcus faecalis, Bacillus subtilis, and Deinococcus radiodurans by assessing Colony Forming Units (CFUs) after 30 min, 1 h, and 2 h of ozone treatment. Further gene expression analysis was conducted on live E. coli K12 immediately post treatment to understand the oxidative damage stress response transcriptome profile. Ozone treatment was also used to degrade synthetic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA as assessed by qPCR CT values. We observed significant and rapid killing of medically relevant and environmental bacteria across four surfaces (blankets, catheter, remotes, and syringes) within 30 min, and up to a 99% reduction in viable bacteria at the end of 2 h treatment cycles. RNA-seq analysis of E. coli K12 revealed 447 differentially expressed genes in response to ozone treatment and an enrichment for oxidative stress response and related pathways. RNA degradation of synthetic SARS-CoV-2 RNA was seen an hour into ozone treatment as compared to non-treated controls, and a non-replicative form of the virus was shown to have significant RNA degradation at 30 min. These results show the strong promise of ozone treatment of surfaces for reducing the risk of hospital-acquired infections and as a method for degradation of SARS-CoV-2 RNA.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A fully automated workflow for SARS-CoV2 RNA detection
    Rader, Jethary
    Watson, Kinnari
    Wei, Han
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2022, 30 (SUPPL 1) : 466 - 466
  • [2] SARS-CoV2 RNA detection in a pancreatic pseudocyst sample
    Schepis, T.
    Larghi, A.
    Papa, A.
    Miele, L.
    Panzuto, F.
    De Biase, L.
    Annibale, B.
    Cattani, P.
    Rapaccini, G. L.
    PANCREATOLOGY, 2020, 20 (05) : 1011 - 1012
  • [3] RNA dependent RNA polymerase (RdRp) as a drug target for SARS-CoV2
    Mishra, Avinash
    Rathore, Anurag S.
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (13): : 6039 - 6051
  • [4] Demonstrated SARS-CoV-2 Surface Disinfection Using Ozone
    Volkoff, Savannah J.
    Carlson, Trevor J.
    Leik, Kelsey
    Smith, Jacques J.
    Graves, Duane
    Dennis, Philip
    Aris, Taylor
    Cuthbertson, Doug
    Holmes, Andrew
    Craig, Kirk
    Marvin, Bruce
    Nesbit, Eric
    OZONE-SCIENCE & ENGINEERING, 2021, 43 (04) : 296 - 305
  • [5] SARS-CoV2 pandemic: SARS-CoV2 seroprevalence and impact on HIV suppression in PLWH
    Cuomo, G.
    Bacca, E.
    Menozzi, M.
    Carli, F.
    Borghi, V.
    Guaraldi, G.
    Mussini, C.
    JOURNAL OF THE INTERNATIONAL AIDS SOCIETY, 2020, 23 : 111 - 112
  • [6] A Standardization Protocol for the In Situ Detection of SARS-CoV2 RNA and Proteins
    Nuovo, Gerard J.
    Suster, David
    Tili, Esmerina
    Awad, Hamdy
    Magro, Cynthia
    APPLIED IMMUNOHISTOCHEMISTRY & MOLECULAR MORPHOLOGY, 2022, 30 (02) : 83 - 90
  • [7] Lack of Infectivity of SARS-CoV2 RNA+ Donor Plasma
    Muench, Marcus O.
    Jin, Jing
    Chaflets, Daniel
    Darst, Orsolya
    Hui, Alvin
    Townsend, Rebecca
    Stone, Mars
    Simmons, Graham
    Bakkour, Sonia
    Norris, Philip J.
    Jackman, Rachael P.
    TRANSFUSION, 2022, 62 : 11A - 12A
  • [8] Environmental Disinfection Strategies to Prevent Indirect Transmission of SARS-CoV2 in Healthcare Settings
    Lauritano, Dorina
    Moreo, Giulia
    Limongelli, Luisa
    Nardone, Michele
    Carinci, Francesco
    APPLIED SCIENCES-BASEL, 2020, 10 (18):
  • [9] Humoral Immune Responses to SARS-CoV2 Infections and upon Vaccination Against SARS-CoV2
    Finzel, Stephanie
    Peter, Nicole
    Brand, Chiara
    Fischer, Beate
    Keller, Barbel
    Weigang, Sebastian
    Kochs, Georg
    Schwemmle, Martin
    Rieg, Siegbert
    Mathe, Philipp
    Kern, Winfried
    van der Hoek, Lia
    de la Rosa, Kathrin
    Jack, Hans-Martin
    Warnatz, Klaus
    Voll, Reinhard
    Eibel, Hermann
    ARTHRITIS & RHEUMATOLOGY, 2021, 73 : 12 - 13
  • [10] Ibuprofen and thromboembolism in SARS-COV2
    Arjomandi Rad, Arian
    Vardanyan, Robert
    Tas, Natalie R.
    JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2020, 18 (09) : 2425 - 2427