NASH EQUILIBRIA FOR COMPONENTWISE VARIATIONAL SYSTEMS

被引:1
|
作者
Stan, Andrei [1 ,2 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
[2] Romanian Acad, Tiberiu Popoviciu Inst Numer Anal, Cluj Napoca 400110, Romania
来源
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS | 2023年 / 2023卷
关键词
Dirichlet boundary condition; Monotone operator; Nash equilibrium;
D O I
10.23952/jnfa.2023.6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we generalize an existing result regarding the existence of a Nash equilibrium for a system of fixed point equations. The problem is considered in a more general form and the initial conditions are also improved, without changing the final conclusion. This is achieved by combining the idea of a solution operator with monotone operator techniques and classical fixed point principles. An application to a coupled system with Dirichlet boundary conditions involving the p-Laplacian is provided.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Nash equilibria, variational inequalities, and dynamical systems
    Cavazzuti, E
    Pappalardo, M
    Passacantando, M
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 114 (03) : 491 - 506
  • [2] Nash Equilibria, Variational Inequalities, and Dynamical Systems
    E. Cavazzuti
    M. Pappalardo
    M. Passacantando
    Journal of Optimization Theory and Applications, 2002, 114 : 491 - 506
  • [3] Linking Methods for Componentwise Variational Systems
    Precup, Radu
    Stan, Andrei
    RESULTS IN MATHEMATICS, 2023, 78 (06)
  • [4] Linking Methods for Componentwise Variational Systems
    Radu Precup
    Andrei Stan
    Results in Mathematics, 2023, 78
  • [5] VARIATIONAL STABILITY OF SOCIAL NASH EQUILIBRIA
    Morgan, Jacqueline
    Scalzo, Vincenzo
    INTERNATIONAL GAME THEORY REVIEW, 2008, 10 (01) : 17 - 24
  • [6] NASH POINT EQUILIBRIA FOR VARIATIONAL INTEGRALS
    BENSOUSSAN, A
    FREHSE, J
    LECTURE NOTES IN MATHEMATICS, 1984, 1107 : 28 - 62
  • [7] Nash Equilibria in Stabilizing Systems
    Gouda, Mohamed G.
    Acharya, Hrishikesh B.
    STABILIZATION, SAFETY, AND SECURITY OF DISTRIBUTED SYSTEMS, PROCEEDINGS, 2009, 5873 : 311 - 324
  • [8] Nash equilibria in stabilizing systems
    Gouda, M. G.
    Acharya, H. B.
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (33) : 4325 - 4335
  • [9] VARIATIONAL ANALYSIS OF NASH EQUILIBRIA FOR A MODEL OF TRAFFIC FLOW
    Bressan, Alberto
    Liu, Chen Jie
    Shen, Wen
    Yu, Fang
    QUARTERLY OF APPLIED MATHEMATICS, 2012, 70 (03) : 495 - 515
  • [10] Nash-type equilibria on Riemannian manifolds: A variational approach
    Kristaly, Alexandru
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (05): : 660 - 688