Machine learning-based anomaly detection of groundwater microdynamics: case study of Chengdu, China

被引:4
|
作者
Shi, Haoxin [1 ,2 ]
Guo, Jian [1 ]
Deng, Yuandong [3 ]
Qin, Zixuan [1 ]
机构
[1] Chengdu Univ Technol, State Key Lab Geohazard Prevent & Geoenviromment P, Chengdu 610059, Peoples R China
[2] Jilin Univ, Coll Construct Engn, Changchun 130026, Peoples R China
[3] Jilin Univ, Coll New Energy & Environm, Changchun 130026, Peoples R China
基金
中国国家自然科学基金;
关键词
KUALIANGZI LANDSLIDE; WATER; QUALITY; SERIES;
D O I
10.1038/s41598-023-38447-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Detection of subsurface hydrodynamic anomalies plays a significant role in groundwater resource management and environmental monitoring. In this paper, based on data from the groundwater level, atmospheric pressure, and precipitation in the Chengdu area of China, a method for detecting outliers considering the factors affecting groundwater levels is proposed. By analyzing the factors affecting groundwater levels in the monitoring site and eliminating them, simplified groundwater data is obtained. Applying sl-Pauta (self-learning-based Pauta), iForest (Isolated Forest), OCSVM (One-Class SVM), and KNN to synthetic data with known outliers, testing and evaluating the effectiveness of 4 technologies. Finally, the four methods are applied to the detection of outliers in simplified groundwater levels. The results show that in the detection of outliers in synthesized data, the OCSVM method has the best detection performance, with a precision rate of 88.89%, a recall rate of 91.43%, an F1 score of 90.14%, and an AUC value of 95.66%. In the detection of outliers in simplified groundwater levels, a qualitative analysis of the displacement data within the field of view indicates that the outlier detection performance of iForest and OCSVM is better than that of KNN. The proposed method for considering the factors affecting groundwater levels can improve the efficiency and accuracy of detecting outliers in groundwater level data.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Machine learning-based anomaly detection of groundwater microdynamics: case study of Chengdu, China
    Haoxin Shi
    Jian Guo
    Yuandong Deng
    Zixuan Qin
    Scientific Reports, 13
  • [2] Certain Strategic Study on Machine Learning-Based Graph Anomaly Detection
    Saranya, S.
    Rajalakshmi, M.
    MOBILE COMPUTING AND SUSTAINABLE INFORMATICS, 2022, 68 : 65 - 94
  • [3] Machine Learning-Based Anomaly Detection Techniques in Ophthalmology
    Lu, Randy Y.
    Bagdasarova, Yelena
    Lee, Aaron Y.
    JAMA OPHTHALMOLOGY, 2022, 140 (02) : 189 - 190
  • [4] Machine Learning-based Anomaly Detection for Particle Accelerators
    Marcato, Davide
    Arena, Giovanni
    Bortolato, Damiano
    Gelain, Fabio
    Martinelli, Valentina
    Munaron, Enrico
    Roetta, Marco
    Savarese, Giovanni
    Susto, Gian Antonio
    5TH IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (IEEE CCTA 2021), 2021, : 240 - 246
  • [5] The interplay of machine learning-based resonant anomaly detection methods
    Tobias Golling
    Gregor Kasieczka
    Claudius Krause
    Radha Mastandrea
    Benjamin Nachman
    John Andrew Raine
    Debajyoti Sengupta
    David Shih
    Manuel Sommerhalder
    The European Physical Journal C, 84
  • [6] Machine Learning-Based Anomaly Detection in NFV: A Comprehensive Survey
    Zehra, Sehar
    Faseeha, Ummay
    Syed, Hassan Jamil
    Samad, Fahad
    Ibrahim, Ashraf Osman
    Abulfaraj, Anas W.
    Nagmeldin, Wamda
    SENSORS, 2023, 23 (11)
  • [7] Survey on Machine Learning-Based Anomaly Detection for Industrial Internet
    Liu Q.
    Chen Y.
    Ni J.
    Luo C.
    Liu C.
    Cao Y.
    Tan R.
    Feng Y.
    Zhang Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (05): : 994 - 1014
  • [8] The interplay of machine learning-based resonant anomaly detection methods
    Golling, Tobias
    Kasieczka, Gregor
    Krause, Claudius
    Mastandrea, Radha
    Nachman, Benjamin
    Raine, John Andrew
    Sengupta, Debajyoti
    Shih, David
    Sommerhalder, Manuel
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (03):
  • [9] Machine learning-based ensemble model for groundwater quality prediction: A case study
    Jose, Annie
    Yasala, Srinivas
    WATER PRACTICE AND TECHNOLOGY, 2024, 19 (06) : 2364 - 2375
  • [10] Anomaly Detection using Machine Learning with a Case Study
    Jidiga, Goverdhan Reddy
    Sammulal, P.
    2014 INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES (ICACCCT), 2014, : 1060 - 1065