Farlie-Gumbel-Morgenstern Bivariate Moment Exponential Distribution and Its Inferences Based on Concomitants of Order Statistics

被引:6
|
作者
Arun, Sasikumar Padmini [1 ]
Chesneau, Christophe [2 ]
Maya, Radhakumari [3 ]
Irshad, Muhammed Rasheed [4 ]
机构
[1] Univ Kerala, Kerala Univ Lib, Res Ctr, Trivandrum 695034, India
[2] Univ Caen Basse Normandie, Dept Math, F-14032 Caen, France
[3] Univ Coll, Dept Stat, Trivandrum 695034, India
[4] Cochin Univ Sci & Technol, Dept Stat, Cochin 682022, India
来源
STATS | 2023年 / 6卷 / 01期
关键词
concomitants of order statistics; moment exponential distribution; inference;
D O I
10.3390/stats6010015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this research, we design the Farlie-Gumbel-Morgenstern bivariate moment exponential distribution, a bivariate analogue of the moment exponential distribution, using the Farlie-Gumbel-Morgenstern approach. With the analysis of real-life data, the competitiveness of the Farlie-Gumbel-Morgenstern bivariate moment exponential distribution in comparison with the other Farlie-Gumbel-Morgenstern distributions is discussed. Based on the Farlie-Gumbel-Morgenstern bivariate moment exponential distribution, we develop the distribution theory of concomitants of order statistics and derive the best linear unbiased estimator of the parameter associated with the variable of primary interest (study variable). Evaluations are also conducted regarding the efficiency comparison of the best linear unbiased estimator relative to the respective unbiased estimator. Additionally, empirical illustrations of the best linear unbiased estimator with respect to the unbiased estimator are performed.
引用
收藏
页码:253 / 267
页数:15
相关论文
共 50 条