Unavoidable Patterns in Complete Simple Topological Graphs

被引:1
|
作者
Suk, Andrew [1 ]
Zeng, Ji [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
关键词
Topological graph; Unavoidable patterns; Plane path; DISJOINT EDGES;
D O I
10.1007/978-3-031-22203-0_1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We show that every complete n-vertex simple topological graph contains a topological subgraph on at least (log n)(1/4-o(1)) vertices that is weakly isomorphic to the complete convex geometric graph or the complete twisted graph. This is the first improvement on the bound Omega(log(1/8) n) obtained in 2003 by Pach, Solymosi, and Toth. We also show that every complete n-vertex simple topological graph contains a plane path of length at least (log n)(1-o(1)).
引用
下载
收藏
页码:3 / 15
页数:13
相关论文
共 50 条
  • [1] Unavoidable Patterns in Complete Simple Topological Graphs
    Suk, Andrew
    Zeng, Ji
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, : 79 - 91
  • [2] Unavoidable configurations in complete topological graphs
    Pach, J
    Solymosi, J
    Tóth, G
    DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (02) : 311 - 320
  • [3] Unavoidable Configurations in Complete Topological Graphs
    János Pach
    József Solymosi
    Géza Tóth
    Discrete & Computational Geometry, 2003, 30 : 311 - 320
  • [4] Enumeration of simple complete topological graphs
    Kyncl, Jan
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (07) : 1676 - 1685
  • [5] Unavoidable topological minors of infinite graphs
    Chun, Carolyn
    Ding, Guoli
    DISCRETE MATHEMATICS, 2010, 310 (24) : 3512 - 3522
  • [6] Simple Realizability of Complete Abstract Topological Graphs Simplified
    Kyncl, Jan
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2015, 2015, 9411 : 309 - 320
  • [7] Simple Realizability of Complete Abstract Topological Graphs in P
    Kyncl, Jan
    DISCRETE & COMPUTATIONAL GEOMETRY, 2011, 45 (03) : 383 - 399
  • [8] Simple Realizability of Complete Abstract Topological Graphs Simplified
    Jan Kynčl
    Discrete & Computational Geometry, 2020, 64 : 1 - 27
  • [9] Simple Realizability of Complete Abstract Topological Graphs in P
    Jan Kynčl
    Discrete & Computational Geometry, 2011, 45 : 383 - 399
  • [10] Simple Realizability of Complete Abstract Topological Graphs Simplified
    Kyncl, Jan
    DISCRETE & COMPUTATIONAL GEOMETRY, 2020, 64 (01) : 1 - 27