Nonlinear partial differential equations on noncommutative Euclidean spaces

被引:0
|
作者
McDonald, Edward [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
OPERATOR INTEGRALS;
D O I
10.1007/s00028-023-00928-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Noncommutative Euclidean spaces-otherwise known as Moyal spaces or quantum Euclidean spaces-are a standard example of a non-compact noncommutative geometry. Recent progress in the harmonic analysis of these spaces gives us the opportunity to highlight some of their peculiar features. For example, the theory of nonlinear partial differential equations has unexpected properties in this noncommutative setting. We develop elementary aspects of paradifferential calculus for noncommutative Euclidean spaces and give some applications to nonlinear evolution equations. We demonstrate how the analysis of some equations radically simplifies in the strictly noncommutative setting.
引用
收藏
页数:58
相关论文
共 50 条
  • [1] Nonlinear partial differential equations on noncommutative Euclidean spaces
    Edward McDonald
    Journal of Evolution Equations, 2024, 24
  • [2] Noncommutative Euclidean spaces
    Dubois-Violette, Michel
    Landi, Giovanni
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 130 : 315 - 330
  • [3] NONLINEAR PARTIAL-DIFFERENTIAL EQUATIONS ON HOMOGENEOUS SPACES
    GURSES, M
    OGUZ, O
    SALIHOGLU, S
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (09): : 1801 - 1817
  • [4] Noncommutative products of Euclidean spaces
    Dubois-Violette, Michel
    Landi, Giovanni
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (11) : 2491 - 2513
  • [5] Noncommutative products of Euclidean spaces
    Michel Dubois-Violette
    Giovanni Landi
    Letters in Mathematical Physics, 2018, 108 : 2491 - 2513
  • [6] Noncommutative and nonassociative pseudo-analysis and its applications on nonlinear partial differential equations
    Pap, E
    Vivona, D
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 246 (02) : 390 - 408
  • [7] Quantum Differentiability on Noncommutative Euclidean Spaces
    McDonald, Edward
    Sukochev, Fedor
    Xiong, Xiao
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 379 (02) : 491 - 542
  • [8] Quantum Euclidean spaces with noncommutative derivatives
    Gao, Li
    Junge, Marius
    McDonald, Edward
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2022, 16 (01) : 153 - 213
  • [9] NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
    LAX, PD
    AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (04): : 430 - &
  • [10] Quantum Differentiability on Noncommutative Euclidean Spaces
    Edward McDonald
    Fedor Sukochev
    Xiao Xiong
    Communications in Mathematical Physics, 2020, 379 : 491 - 542