On a projection estimator of the regression function derivative

被引:1
|
作者
Comte, Fabienne [1 ,3 ]
Marie, Nicolas [2 ]
机构
[1] Univ Paris, CNRS, Paris, France
[2] Univ Paris Nanterre, Lab ModalX, Nanterre, France
[3] Univ Paris, CNRS, MAP5 UMR 8145, F-75006 Paris, France
关键词
Adaptive procedure; derivative estimation; noncompact support; nonparametric regression; optimal rates; projection method; CONVERGENCE; SELECTION; RATES; BASES;
D O I
10.1080/10485252.2023.2209198
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the estimation of the derivative of a regression function in a standard univariate regression model. The estimators are defined either by derivating nonparametric least-squares estimators of the regression function or by estimating the projection of the derivative. We prove two simple risk bounds allowing to compare our estimators. More elaborate bounds under a stability assumption are then provided. Bases and spaces on which we can illustrate our assumptions and first results are both of compact or noncompact type, and we discuss the rates reached by our estimators. They turn out to be optimal in the compact case. Lastly, we propose a model selection procedure and prove the associated risk bound. To consider bases with a noncompact support makes the problem difficult.
引用
收藏
页码:773 / 819
页数:47
相关论文
共 50 条
  • [1] INADMISSIBILITY OF CLASSICAL ESTIMATOR OF MULTIPLE REGRESSION FUNCTION
    BARANCHI.AJ
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (05): : 1592 - &
  • [2] AN ONLINE PROJECTION ESTIMATOR FOR NONPARAMETRIC REGRESSION IN REPRODUCING KERNEL HILBERT SPACES
    Zhang, Tianyu
    Simon, Noah
    [J]. STATISTICA SINICA, 2023, 33 (01) : 127 - 148
  • [3] A CONSISTENT ESTIMATOR FOR THE SUPREMUM OF THE PROJECTION INDEX BASED ON SLICED INVERSE REGRESSION
    ZHU, LX
    LI, GY
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1991, 20 (04) : 1211 - 1223
  • [4] Sequential RBF function estimator - Memory regression network
    Chow, CK
    Tsui, HT
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 4815 - 4820
  • [5] Correcting an estimator of a multivariate monotone function with isotonic regression
    Westling, Ted
    van der Laan, Mark J.
    Carone, Marco
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (02): : 3032 - 3069
  • [6] A simple nonparametric estimator of a strictly monotone regression function
    Dette, Holger
    Neumeyer, Natalie
    Pilz, Kay F.
    [J]. BERNOULLI, 2006, 12 (03) : 469 - 490
  • [7] Estimator selection and combination in scalar-on-function regression
    Goldsmith, Jeff
    Scheipl, Fabian
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 70 : 362 - 372
  • [8] Wavelet Threshold Estimator of Regression Function with Random Design
    董金田
    张双林
    [J]. 数学进展, 1999, (05) : 471 - 472
  • [9] Smooth LASSO estimator for the Function-on-Function linear regression model
    Centofanti, Fabio
    Fontana, Matteo
    Lepore, Antonio
    Vantini, Simone
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 176
  • [10] Nonparametric tests for bounds on the derivative of a regression function
    Heckman, N.E.
    Li, B.
    [J]. Institute of Statistical Mathematics. Annals, 1996, 48 (02): : 315 - 336