Non-ergodic extended regime in random matrix ensembles: insights from eigenvalue spectra

被引:5
|
作者
Xu, Wang-Fang [1 ,2 ,3 ]
Rao, W. J. [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, China Acad Rural Dev, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Sch Publ Affairs, Hangzhou 310027, Peoples R China
来源
SCIENTIFIC REPORTS | 2023年 / 13卷 / 01期
基金
中国国家自然科学基金;
关键词
TRANSITION; FLUCTUATIONS;
D O I
10.1038/s41598-023-27751-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The non-ergodic extended (NEE) regime in physical and random matrix (RM) models has attracted a lot of attention in recent years. Formally, NEE regime is characterized by its fractal wavefunctions and long-range spectral correlations such as number variance or spectral form factor. More recently, it's proposed that this regime can be conveniently revealed through the eigenvalue spectra by means of singular-value-decomposition (SVD), whose results display a super-Poissonian behavior that reflects the minibands structure of NEE regime. In this work, we employ SVD to a number of RM models, and show it not only qualitatively reveals the NEE regime, but also quantitatively locates the ergodic-NEE transition point. With SVD, we further suggest the NEE regime in a new RM model-the sparse RM model.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Non-ergodic extended regime in random matrix ensembles: insights from eigenvalue spectra
    Wang-Fang Xu
    W. J. Rao
    [J]. Scientific Reports, 13 (1)
  • [2] Non-ergodic extended phase of the Quantum Random Energy model
    Faoro, Lara
    Feigel'man, Mikhail V.
    Ioffe, Lev
    [J]. ANNALS OF PHYSICS, 2019, 409
  • [3] From non-ergodic eigenvectors to local resolvent statistics and back: A random matrix perspective
    Facoetti, Davide
    Vivo, Pierpaolo
    Biroli, Giulio
    [J]. EPL, 2016, 115 (04)
  • [4] Non-ergodic behaviour of the k-body embedded Gaussian random ensembles for bosons
    Asaga, T
    Benet, L
    Rupp, T
    Weidenmüller, HA
    [J]. EUROPHYSICS LETTERS, 2001, 56 (03): : 340 - 346
  • [5] ERGODIC PROPERTIES OF RANDOM-MATRIX ENSEMBLES
    PANDEY, A
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (04): : 591 - 591
  • [6] Dynamical regimes in non-ergodic random Boolean networks
    Marco Villani
    Davide Campioli
    Chiara Damiani
    Andrea Roli
    Alessandro Filisetti
    Roberto Serra
    [J]. Natural Computing, 2017, 16 : 353 - 363
  • [7] Dynamical regimes in non-ergodic random Boolean networks
    Villani, Marco
    Campioli, Davide
    Damiani, Chiara
    Roli, Andrea
    Filisetti, Alessandro
    Serra, Roberto
    [J]. NATURAL COMPUTING, 2017, 16 (02) : 353 - 363
  • [8] Weakly driven anomalous diffusion in non-ergodic regime: an analytical solution
    Mauro Bologna
    Gerardo Aquino
    [J]. The European Physical Journal B, 2014, 87
  • [9] Weakly driven anomalous diffusion in non-ergodic regime: an analytical solution
    Bologna, Mauro
    Aquino, Gerardo
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (01):
  • [10] Non-Gaussian random-matrix ensembles with banded spectra
    Ghosh, S
    Pandey, A
    Puri, S
    Saha, R
    [J]. PHYSICAL REVIEW E, 2003, 67 (02):