Quantifying the intrinsic mechanical flexibility of crystalline materials

被引:1
|
作者
Bhogra, Meha [1 ,2 ]
Goodwin, Andrew L. [3 ]
Cheetham, Anthony K. [4 ]
Waghmare, Umesh V. [1 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res, Theoret Sci Unit, Bangalore 560064, India
[2] Shiv Nadar Univ, Dept Mech Engn, Gautam Budh Nagar 201314, Uttar Pradesh, India
[3] Univ Oxford, Inorgan Chem Lab, South Parks Rd, Oxford OX1 3QR, England
[4] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
基金
欧洲研究理事会;
关键词
NEGATIVE-THERMAL-EXPANSION; PROTEIN FLEXIBILITY; PORE-SIZE; PREDICTIONS; DESIGN; PHASE; MOFS;
D O I
10.1103/PhysRevB.108.214106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The flexibility of a solid reflects its ability to accommodate reversible changes in size or shape. While the term is commonly used in describing physical and biological systems, a quantitative measure and hence the fundamental understanding of flexibility are presently lacking. Drawing on the phenomenology of flow in liquids, we introduce here a measure of intrinsic flexibility of crystalline materials as the fractional release of elastic stress or strain energy through symmetry-constrained internal structural rearrangements. This metric distinguishes robustly the concept of flexibility from that of compliance. Using first-principles density functional theory calculations, we determine the flexibility of four key systems spanning a range of elastic stiffness and underlying chemistries. We find flexibility arises not only from large structural rearrangements associated with soft phonons, but also from hard phonons that couple strongly to strain fields. Our flexibility measure enables high-throughput screening of materials databases to identify next-generation ultraflexible material.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] INTRINSIC MECHANICAL-PROPERTIES AND STRENGTHENING METHODS IN INORGANIC CRYSTALLINE MATERIALS
    MECKING, H
    HARTIG, C
    SEEGER, J
    [J]. JOURNAL DE PHYSIQUE III, 1991, 1 (06): : 829 - 849
  • [2] Quantifying Impact of Intrinsic Flexibility on Molecular Adsorption in Zeolites
    Daou, Alan S. S.
    Findley, John M.
    Fang, Hanjun
    Boulfelfel, Salah Eddine
    Ravikovitch, Peter, I
    Sholl, David S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (09): : 5296 - 5305
  • [3] The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials
    Witman, Matthew
    Ling, Sanliang
    Jawahery, Sudi
    Boyd, Peter G.
    Haranczyk, Maciej
    Slater, Ben
    Smit, Berend
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (15) : 5547 - 5557
  • [4] Influence of the Flexibility of the Diimidazolium Cations on Their Organization into Crystalline Materials
    Leclercq, Loic
    Schmitzer, Andreea R.
    [J]. CRYSTAL GROWTH & DESIGN, 2011, 11 (09) : 3828 - 3836
  • [5] Intrinsic flexibility of porous materials; theory, modelling and the flexibility window of the EMT zeolite framework
    Fletcher, Rachel E.
    Wells, Stephen A.
    Leung, Ka Ming
    Edwards, Peter P.
    Sartbaeva, Asel
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2015, 71 : 641 - 647
  • [6] Photochromic materials with tunable color and mechanical flexibility
    Yang, Hyun-Kwan
    Ozcam, A. Evren
    Efimenko, Kirill
    Genzer, Jan
    [J]. SOFT MATTER, 2011, 7 (08) : 3766 - 3774
  • [7] FlexScore: Quantifying Flexibility
    Tan, Tian
    Nurvitadhi, Eriko
    Dasu, Aravind
    Langhammer, Martin
    Chiou, Derek
    [J]. IEEE COMPUTER ARCHITECTURE LETTERS, 2021, 20 (01) : 58 - 61
  • [8] Quantifying machine flexibility
    Baykasoglu, Adil
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2009, 47 (15) : 4109 - 4123
  • [9] Morphology and mechanical properties of crystalline polyolefin materials
    Nitta, K
    [J]. JOURNAL OF THE SOCIETY OF RHEOLOGY JAPAN, 2001, 29 (04): : 169 - 174
  • [10] FLEXIBILITY IN CRYSTALLINE INSULINS
    BADGER, J
    [J]. BIOPHYSICAL JOURNAL, 1992, 61 (03) : 816 - 819