Does Varying BeeGFS Configuration Affect the I/O Performance of HPC Workloads?

被引:0
|
作者
Borkar, Arnav [1 ]
Tony, Joel [1 ]
Vamsi, Hari K. N. [1 ]
Barman, Tushar [1 ]
Bhisikar, Yash [1 ]
Sreenath, T. M. [1 ]
Paul, Arnab K. [1 ]
机构
[1] BITS Pilani, KK Birla Goa Campus, Pilani, Rajasthan, India
关键词
BeeGFS; High Performance Computing; Parallel File System;
D O I
10.1109/CLUSTERWorkshops61457.2023.00010
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The increasing gap between processor and disk performance leads to high performance computing (HPC) applications facing I/O bottlenecks. This makes parallel file systems one of the most important components in an HPC cluster. This work analyzes the I/O performance of different workloads for various BeeGFS configurations. Our analysis shows that the default allocation strategies and striping configuration leads to an imbalanced distribution of workload data, thereby negatively affecting the I/O performance.
引用
收藏
页码:5 / 7
页数:3
相关论文
共 50 条
  • [1] Extracting and characterizing I/O behavior of HPC workloads
    Devarajan, Hariharan
    Mohror, Kathryn
    2022 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER 2022), 2022, : 243 - 255
  • [2] An I/O Analysis of HPC Workloads on CephFS and Lustre
    Chiusole, Alberto
    Cozzini, Stefano
    van der Ster, Daniel
    Lamanna, Massimo
    Giuliani, Graziano
    HIGH PERFORMANCE COMPUTING: ISC HIGH PERFORMANCE 2019 INTERNATIONAL WORKSHOPS, 2020, 11887 : 300 - 316
  • [3] Replicating HPC I/O Workloads With Proxy Applications
    Dickson, James
    Wright, Steven
    Maheswaran, Satheesh
    Herdman, Andy
    Miller, Mark C.
    Jarvis, Stephen
    PROCEEDINGS OF PDSW-DISCS 2016 - 1ST JOINT INTERNATIONAL WORKSHOP ON PARALLEL DATA STORAGE AND DATA INTENSIVE SCALABLE COMPUTING SYSTEMS, 2016, : 13 - 18
  • [4] Detecting I/O Access Patterns of HPC Workloads at Runtime
    Bez, Jean Luca
    Boito, Francieli Zanon
    Nou, Ramon
    Miranda, Alberto
    Cortes, Toni
    Navaux, Philippe O. A.
    2019 31ST INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2019), 2019, : 80 - 87
  • [5] I/O Characterization and Performance Evaluation of BeeGFS for Deep Learning
    Chowdhury, Fahim
    Zhu, Yue
    Heer, Todd
    Paredes, Saul
    Moody, Adam
    Goldstone, Robin
    Mohror, Kathryn
    Yu, Weikuan
    PROCEEDINGS OF THE 48TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP 2019), 2019,
  • [6] Characterizing I/O Workloads of HPC Applications Through Online Analysis
    Dong, Wenrui
    Liu, Guangming
    Yu, Jie
    Zuo, You
    2015 IEEE 34TH INTERNATIONAL PERFORMANCE COMPUTING AND COMMUNICATIONS CONFERENCE (IPCCC), 2015,
  • [7] Parallel I/O Evaluation Techniques and Emerging HPC Workloads: A Perspective
    Neuwirth, Sarah
    Paul, Arnab K.
    2021 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER 2021), 2021, : 671 - 679
  • [8] The role of storage target allocation in applications' I/O performance with BeeGFS
    Boito, Francieli
    Pallez, Guillaume
    Teylo, Luan
    2022 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER 2022), 2022, : 267 - 277
  • [9] Characterizing Machine Learning I/O Workloads on Leadership Scale HPC Systems
    Paul, Arnab K.
    Karimi, Ahmad Maroof
    Wang, Feiyi
    29TH INTERNATIONAL SYMPOSIUM ON THE MODELING, ANALYSIS, AND SIMULATION OF COMPUTER AND TELECOMMUNICATION SYSTEMS (MASCOTS 2021), 2021, : 198 - 205
  • [10] Mimir: Extending I/O Interfaces to Express User Intent for Complex Workloads in HPC
    Devarajan, Hariharan
    Mohror, Kathryn
    2023 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM, IPDPS, 2023, : 178 - 188