Controlling quantum many-body systems using reduced-order modeling

被引:1
|
作者
Luchnikov, I. A. [1 ]
Gavreev, M. A.
Fedorov, A. K.
机构
[1] Russian Quantum Ctr, Moscow 143025, Russia
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 01期
关键词
TENSOR PROPAGATOR; DENSITY-MATRICES; TIME EVOLUTION; NETWORKS; CAPACITY;
D O I
10.1103/PhysRevResearch.6.013161
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum many-body control is among the most challenging problems in quantum science due to its outstanding computational complexity in a general case. We propose an efficient approach to a class of many-body quantum control problems, where time-dependent controls are applied to a sufficiently small subsystem. The method employs a tensor-network scheme to construct a reduced-order model of a subsystem's non-Markovian dynamics. The resulting reduced-order model serves as a digital twin of the original subsystem. Such twins allow significantly more efficient dynamics simulation, which enables the use of a gradient-based optimization toolbox in the control parameter space. This approach to building control protocols takes advantage of non-Markovian dynamics of subsystems by design. We validate the proposed method by solving control problems for quantum spin chains. In particular, the approach automatically identifies control sequences for exciting and guiding quasiparticles to recover and transmit quantum information across the system. In addition, we find generalized spin-echo sequences for a system in a many-body localized phase enabling significant revivals. We expect our approach can be useful for ongoing experiments with noisy intermediate-scale quantum devices.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Probing and controlling quantum many-body systems in optical lattices
    Bloch, I.
    [J]. QUANTUM MATTER AT ULTRALOW TEMPERATURES, 2016, 191 : 299 - 323
  • [2] Topological order and fractionalized excitations in quantum many-body systems
    Gu Zhao-Long
    Li Jian-Xin
    [J]. ACTA PHYSICA SINICA, 2024, 73 (07)
  • [3] Universal property of the order parameter in quantum many-body systems
    Panos, CP
    [J]. PHYSICS LETTERS A, 2001, 289 (06) : 287 - 290
  • [4] Complexity of controlling quantum many-body dynamics
    Caneva, T.
    Silva, A.
    Fazio, R.
    Lloyd, S.
    Calarco, T.
    Montangero, S.
    [J]. PHYSICAL REVIEW A, 2014, 89 (04):
  • [5] Controlling many-body quantum chaos: Bose-Hubbard systems
    Beringer, Lukas
    Steinhuber, Mathias
    Urbina, Juan Diego
    Richter, Klaus
    Tomsovic, Steven
    [J]. NEW JOURNAL OF PHYSICS, 2024, 26 (07):
  • [6] QUANTUM THEORY OF MANY-BODY SYSTEMS
    HUGENHOLTZ, NM
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1965, 28 : 201 - +
  • [7] Many-body Wigner quantum systems
    Palev, TD
    Stoilova, NI
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (05) : 2506 - 2523
  • [8] QUANTUM SCALING IN MANY-BODY SYSTEMS
    CONTINENTINO, MA
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1994, 239 (03): : 179 - 213
  • [9] SYNTHETIC QUANTUM MANY-BODY SYSTEMS
    Guerlin, C.
    Baumann, K.
    Brennecke, F.
    Greif, D.
    Joerdens, R.
    Leinss, S.
    Strohmaier, N.
    Tarruell, L.
    Uehlinger, T.
    Moritz, H.
    Esslinger, T.
    [J]. LASER SPECTROSCOPY, 2010, : 212 - 221
  • [10] Disorder in Quantum Many-Body Systems
    Vojta, Thomas
    [J]. ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 10, 2019, 10 (01): : 233 - 252