A perspective on the enabling technologies of explainable AI-based industrial packetized energy management

被引:1
|
作者
Gutierrez-Rojas, Daniel [1 ]
Narayanan, Arun [1 ]
Almeida, Cassia R. Santos Nunes [1 ,2 ]
Almeida, Gustavo M. [1 ,3 ]
Pfau, Diana [4 ]
Tian, Yu [4 ]
Yang, Xu [4 ]
Jung, Alex [4 ]
Nardelli, Pedro H. J. [1 ]
机构
[1] Lappeenranta Lahti Univ Technol, Sch Energy Syst, Yliopistonkatu 34, Lappeenranta 53850, Finland
[2] Fed Ctr Technol Educ Minas Gerais, Dept Elect Engn, Av Amazonas 5253, BR-30421169 Belo Horizonte, MG, Brazil
[3] Univ Fed Minas Gerais, Sch Engn, Dept Chem Engn, Av Amazonas 5253, BR-30421169 Belo Horizonte, MG, Brazil
[4] Aalto Univ, Dept Comp Sci, Konemiehentie 2, Espoo 02150, Finland
关键词
DEMAND-SIDE MANAGEMENT; POWER; OPTIMIZATION; INTERNET; COORDINATION; GENERATION; PROTECTION; NETWORK; MODELS;
D O I
10.1016/j.isci.2023.108415
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper reviews the key information and communication technologies that are necessary to build an effective industrial energy management system considering the intermittence of renewable sources like wind and solar (dagger). In particular, we first introduce the concept of software-defined energy networks in the context of industrial cyber-physical systems aiming at the optimal energy resource allocation in terms of its environmental impact. The task is formulated as a dynamic scheduling problem where supply and demand must match at minute-level timescale, also considering energy storage units. The use of (explainable and trustworthy) artificial intelligence (AI), (informative) networked data, demand-side management, machine-type (wireless) communications, and energy-aware scheduling in industrial plants are explored in detail. The paper also provides a framework for understanding the complexities of managing renewable energy sources in industrial plants while maintaining efficiency and environmental sustainability.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Energy Internet via Packetized Management: Enabling Technologies and Deployment Challenges
    Nardelli, Pedro H. J.
    Alves, Hirley
    Pinomaa, Antti
    Wahid, Sohail
    Tome, Mauricio De Castro
    Kosonen, Antti
    Kuhnlenz, Florian
    Pouttu, Ari
    Carrillo, Dick
    IEEE ACCESS, 2019, 7 : 16909 - 16924
  • [2] Enabling technologies for industrial energy demand management
    Dyer, Caroline H.
    Hammond, Geoffrey P.
    Jones, Craig I.
    McKenna, Russell C.
    ENERGY POLICY, 2008, 36 (12) : 4434 - 4443
  • [3] Explainable AI-based facility control system for energy saving and carbon reduction
    Tieng, Hao
    Lai, Chien-Yuan
    Fan, Sheng-Xiang
    Wu, Tung-Qing
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2025, : 2301 - 2310
  • [4] Explainable AI-based Alzheimer's prediction and management using multimodal data
    Jahan, Sobhana
    Abu Taher, Kazi
    Kaiser, M. Shamim
    Mahmud, Mufti
    Rahman, Md. Sazzadur
    Hosen, A. S. M. Sanwar
    Ra, In-Ho
    PLOS ONE, 2023, 18 (11):
  • [5] Network science and explainable AI-based life cycle management of sustainability models
    Ipkovich, Adam
    Czvetko, Timea
    Acosta, Lilibeth A.
    Lee, Sanga
    Nzimenyera, Innocent
    Sebestyen, Viktor
    Abonyi, Janos
    PLOS ONE, 2024, 19 (06):
  • [6] Enabling AI technologies for Internet of Energy
    Xu, Changqiao
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2022, 33 (03)
  • [7] AI-based Academic Advising Framework: A Knowledge Management Perspective
    Bilquise, Ghazala
    Shaalan, Khaled
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (08) : 193 - 203
  • [8] An Explainable AI-Based Fault Diagnosis Model for Bearings
    Hasan, Md Junayed
    Sohaib, Muhammad
    Kim, Jong-Myon
    SENSORS, 2021, 21 (12)
  • [9] Explainable AI-based Intrusion Detection in the Internet of Things
    Siganos, Marios
    Radoglou-Grammatikis, Panagiotis
    Kotsiuba, Igor
    Markakis, Evangelos
    Moscholios, Ioannis
    Goudos, Sotirios
    Sarigiannidis, Panagiotis
    18TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY & SECURITY, ARES 2023, 2023,
  • [10] Improved energy management of chiller system with AI-based regression
    Yu, Fu-Wing
    Ho, Wai-Tung
    Wong, Chak-Fung Jeff
    APPLIED SOFT COMPUTING, 2024, 150