Edge connectivity of simplicial polytopes

被引:0
|
作者
Pilaud, Vincent [1 ,2 ]
Pineda-Villavicencio, Guillermo [3 ,4 ]
Ugon, Julien [3 ,4 ]
机构
[1] Ecole Polytech, CNRS, Palaiseau, France
[2] Ecole Polytech, LIX, Palaiseau, France
[3] Federat Univ Australia, Geelong, Australia
[4] Deakin Univ, Sch Informat Technol, Geelong, Australia
关键词
D O I
10.1016/j.ejc.2023.103752
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the graph of a simplicial polytope of dimen-sion d > 3 has no nontrivial minimum edge cut with fewer than d(d+1)/2 edges, hence the graph is min{& delta;, d(d+1)/2}-edge-connected where & delta; denotes the minimum degree. When d = 3, this implies that every minimum edge cut in a plane trian-gulation is trivial. When d > 4, we construct a simplicial d-polytope whose graph has a nontrivial minimum edge cut of cardinality d(d + 1)/2, proving that the aforementioned result is best possible.& COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条