An efficient primal-dual interior point algorithm for convex quadratic semidefinite optimization

被引:0
|
作者
Zaoui, Billel [1 ]
Benterki, Djamel [1 ]
Yassine, Adnan [2 ]
机构
[1] Univ Ferhat Abbas Setif 1, Fac Sci, Dept Math, Lab Fundamental & Numer Math, Setif 19000, Algeria
[2] Normandie Univ, UNIHAVRE, LMAH, ISCN,FR CNRS 3335, F-76600 Le Havre, France
关键词
Convex quadratic semidefinite optimization; Interior point methods; Descent direction; Primal-dual algorithm; Nesterov-Todd scaling scheme; SEARCH DIRECTIONS;
D O I
10.1007/s12190-024-02041-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a primal-dual interior point algorithm for convex quadratic semidefinite optimization. This algorithm is based on an extension of the technique presented in the work of Zhang et al. for linear optimization. The symmetrization of the search direction is based on the Nesterov-Todd scaling scheme. Our analysis demonstrates that this method solves efficiently the problem within polynomial time. Notably, the short-step algorithm achieves the best-known iteration bound, namely O(nlogn epsilon)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\sqrt{n}\log \frac{n}{\varepsilon })$$\end{document}-iterations. The numerical experiments conclude that the newly proposed algorithm is not only polynomial but requires a number of iterations clearly lower than that obtained theoretically.
引用
收藏
页码:2129 / 2148
页数:20
相关论文
共 50 条
  • [1] A primal-dual interior-point algorithm for convex quadratic semidefinite optimization based on a new kernel function
    Pang, Jinjuan
    Zhang, Mingwang
    Chen, Yuejiao
    Huang, Zhengwei
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (06): : 22 - 37
  • [2] Primal-dual Feasible Interior Point Algorithm for Convex Quadratic Programming
    Yong, Longquan
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION (ICMS2009), VOL 3, 2009, : 109 - 113
  • [3] A new primal-dual interior-point algorithm for semidefinite optimization
    Lee, Yong-Hoon
    Jin, Jin-Hee
    Cho, Gyeong-Mi
    [J]. 2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND APPLICATIONS (ICISA), 2014,
  • [4] Primal-dual interior-point algorithm for convex quadratic semi-definite optimization
    Wang, G. Q.
    Bai, Y. Q.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 3389 - 3402
  • [5] A Primal-Dual Interior-Point Algorithm for Convex Quadratic Optimization Based on A Parametric Kernel Function
    Wang, Guoqiang
    Bai, Yanqin
    [J]. INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, 2009, : 748 - +
  • [6] A new wide neighbourhood primal-dual interior-point algorithm for semidefinite optimization
    Kheirfam, B.
    [J]. OPTIMIZATION, 2019, 68 (12) : 2243 - 2263
  • [7] IPRQP: a primal-dual interior-point relaxation algorithm for convex quadratic programming
    Rui-Jin Zhang
    Xin-Wei Liu
    Yu-Hong Dai
    [J]. Journal of Global Optimization, 2023, 87 : 1027 - 1053
  • [8] IPRQP: a primal-dual interior-point relaxation algorithm for convex quadratic programming
    Zhang, Rui-Jin
    Liu, Xin-Wei
    Dai, Yu-Hong
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2023, 87 (2-4) : 1027 - 1053
  • [9] LARGE-UPDATE PRIMAL-DUAL INTERIOR-POINT ALGORITHM FOR SEMIDEFINITE OPTIMIZATION
    Cho, Gyeong-Mi
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2015, 11 (01): : 29 - 36
  • [10] PRIMAL-DUAL INTERIOR-POINT ALGORITHMS FOR CONVEX QUADRATIC CIRCULAR CONE OPTIMIZATION
    Bai, Yanqin
    Gao, Xuerui
    Wang, Guoqiang
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2015, 5 (02): : 211 - 231