Personal exposure to fine particulate matter (PM2.5) and self-reported asthma-related health

被引:8
|
作者
McCarron, Amy [1 ]
Semple, Sean [2 ]
Braban, Christine F. [3 ]
Gillespie, Colin [4 ]
Swanson, Vivien [5 ]
Price, Heather D. [1 ]
机构
[1] Univ Stirling, Biol & Environm Sci, Stirling FK9 4LA, Scotland
[2] Univ Stirling, Inst Social Mkt & Hlth, Stirling FK9 4LA, Scotland
[3] UK Ctr Ecol & Hydrol UKCEH, Penicuik EH26 0QB, Scotland
[4] Scottish Environm Protect Agcy SEPA, Stirling FK9 4TZ, Scotland
[5] Univ Stirling, Psychol, Stirling FK9 4LA, Scotland
关键词
Personal exposure; Asthma; Fine particulate matter; Air pollution; Scotland; AIR-POLLUTION; INDOOR; LIFE;
D O I
10.1016/j.socscimed.2023.116293
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
PM2.5 (fine particulate matter <= 2.5 mu m in diameter) is a key pollutant that can produce acute asthma exacerbations and longer-term deterioration of respiratory health. Individual exposure to PM2.5 is unique and varies across microenvironments. Low-cost sensors (LCS) can collect data at a spatiotemporal resolution previously unattainable, allowing the study of exposures across microenvironments. The aim of this study is to investigate the acute effects of personal exposure to PM2.5 on self-reported asthma-related health. Twenty-eight non-smoking adults with asthma living in Scotland collected PM2.5 personal exposure data using LCS. Measurements were made at a 2-min time resolution for a period of 7 days as participants conducted their typical daily routines. Concurrently, participants were asked to keep a detailed time-activity diary, logging their activities and microenvironments, along with hourly information on their respiratory health and medication use. Health outcomes were modelled as a function of hourly PM2.5 concentration (plus 1- and 2-h lag) using generalized mixed-effects models adjusted for temperature and relative humidity. Personal exposures to PM2.5 varied across microenvironments, with the largest average microenvironmental exposure observed in private residences (11.5 +/- 48.6 mu g/m3) and lowest in the work microenvironment (2.9 +/- 11.3 mu g/m3). The most frequently reported asthma symptoms, wheezing, chest tightness and cough, were reported on 3.4%, 1.6% and 1.6% of participant-hours, respectively. The odds of reporting asthma symptoms increased per interquartile range (IQR) in PM2.5 exposure (odds ratio (OR) 1.29, 95% CI 1.07-1.54) for samehour exposure. Despite this, no association was observed between reliever inhaler use (non-routine, nonexercise related) and PM2.5 exposure (OR 1.02, 95% CI 0.71-1.48). Current air quality monitoring practices are inadequate to detect acute asthma symptom prevalence resulting from PM2.5 exposure; to detect these requires high-resolution air quality data and health information collected in situ. Personal exposure monitoring could have significant implications for asthma self-management and clinical practice.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Monitoring of long-term personal exposure to fine particulate matter (PM2.5)
    Branis, Martin
    Kolomaznikova, Jana
    AIR QUALITY ATMOSPHERE AND HEALTH, 2010, 3 (04): : 235 - 243
  • [2] Monitoring of long-term personal exposure to fine particulate matter (PM2.5)
    Martin Braniš
    Jana Kolomazníková
    Air Quality, Atmosphere & Health, 2010, 3 : 235 - 243
  • [3] Determinants of personal exposure to fine particulate matter (PM2.5) adult subjects in Hong Kong
    Chen, Xiao-Cui
    Ward, Tony J.
    Cao, Jun-Ji
    Lee, Shun-Cheng
    Chow, Judith C.
    Lau, Gabriel N. C.
    Yim, Steve H. L.
    Ho, Kin-Fai
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 628-629 : 1165 - 1177
  • [4] Exposure to fine particulate matter (PM2.5) and pediatric rheumatic diseases
    Wang, Chi-Min
    Jung, Chau-Ren
    Chen, Wei-Ting
    Hwang, Bing-Fang
    ENVIRONMENT INTERNATIONAL, 2020, 138
  • [5] Chemical characterization and sources of personal exposure to fine particulate matter (PM2.5) in the megacity of Guangzhou, China
    Chen, Xiao-Cui
    Jahn, Heiko J.
    Engling, Guenter
    Ward, Tony J.
    Kraemer, Alexander
    Ho, Kin-Fai
    Yim, S. H. L.
    Chan, Chuen-Yu
    ENVIRONMENTAL POLLUTION, 2017, 231 : 871 - 881
  • [6] Multinational prediction of household and personal exposure to fine particulate matter (PM2.5) in the PURE cohort study
    Shupler, Matthew
    Hystad, Perry
    Birch, Aaron
    Li Chu, Yen
    Jeronimo, Matthew
    Miller-Lionberg, Daniel
    Gustafson, Paul
    Rangarajan, Sumathy
    Mustaha, Maha
    Heenan, Laura
    Seron, Pamela
    Lanas, Fernando
    Cazor, Fairuz
    Jose Oliveros, Maria
    Lopez-Jaramillo, Patricio
    Camacho, Paul A.
    Otero, Johnna
    Perez, Maritza
    Yeates, Karen
    West, Nicola
    Ncube, Tatenda
    Ncube, Brian
    Chifamba, Jephat
    Yusuf, Rita
    Khan, Afreen
    Liu, Zhiguang
    Wu, Shutong
    Wei, Li
    Tse, Lap Ah
    Mohan, Deepa
    Kumar, Parthiban
    Gupta, Rajeev
    Mohan, Indu
    Jayachitra, K. G.
    Mony, Prem K.
    Rammohan, Kamala
    Nair, Sanjeev
    Lakshmi, P. V. M.
    Sagar, Vivek
    Khawaja, Rehman
    Iqbal, Romaina
    Kazmi, Khawar
    Yusuf, Salim
    Brauer, Michael
    ENVIRONMENT INTERNATIONAL, 2022, 159
  • [7] Multinational prediction of household and personal exposure to fine particulate matter (PM2.5) in the PURE cohort study
    Shupler, Matthew
    Hystad, Perry
    Birch, Aaron
    Chu, Yen Li
    Jeronimo, Matthew
    Miller-Lionberg, Daniel
    Gustafson, Paul
    Rangarajan, Sumathy
    Mustaha, Maha
    Heenan, Laura
    Seron, Pamela
    Lanas, Fernando
    Cazor, Fairuz
    Jose Oliveros, Maria
    Lopez-Jaramillo, Patricio
    Camacho, Paul A.
    Otero, Johnna
    Perez, Maritza
    Yeates, Karen
    West, Nicola
    Ncube, Tatenda
    Ncube, Brian
    Chifamba, Jephat
    Yusuf, Rita
    Khan, Afreen
    Liu, Zhiguang
    Wu, Shutong
    Wei, Li
    Tse, Lap Ah
    Mohan, Deepa
    Kumar, Parthiban
    Gupta, Rajeev
    Mohan, Indu
    Jayachitra, K.G.
    Mony, Prem K.
    Rammohan, Kamala
    Nair, Sanjeev
    Lakshmi, P.V.M.
    Sagar, Vivek
    Khawaja, Rehman
    Iqbal, Romaina
    Kazmi, Khawar
    Yusuf, Salim
    Brauer, Michael
    Environment International, 2022, 159
  • [8] Impact of Fine Particulate Matter (PM2.5) Exposure During Wildfires on Cardiovascular Health Outcomes
    Haikerwal, Anjali
    Akram, Muhammad
    Del Monaco, Anthony
    Smith, Karen
    Sim, Malcolm R.
    Meyer, Mick
    Tonkin, Andrew M.
    Abramson, Michael J.
    Dennekamp, Martine
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2015, 4 (07):
  • [9] The health economic loss of fine particulate matter (PM2.5) in Beijing
    Li, Li
    Lei, Yalin
    Wu, Sanmang
    Chen, Jiabin
    Yan, Dan
    JOURNAL OF CLEANER PRODUCTION, 2017, 161 : 1153 - 1161
  • [10] Source identification of personal exposure to fine particulate matter (PM2.5) among adult residents of Hong Kong
    Chen, Xiao-Cui
    Ward, Tony J.
    Cao, Jun-Ji
    Lee, Shun-Cheng
    Lau, Ngar-Cheung
    Yim, Steve H. L.
    Ho, Kin-Fai
    ATMOSPHERIC ENVIRONMENT, 2019, 218