Branched-chain amino acid synthesis is coupled to TOR activation early in the cell cycle in yeast

被引:3
|
作者
Blank, Heidi M. [1 ]
Reuse, Carsten [2 ]
Schmidt-Hohagen, Kerstin [2 ]
Hammer, Staci E. [1 ]
Hiller, Karsten [2 ]
Polymenis, Michael [1 ]
机构
[1] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA
[2] Tech Univ Carolo Wilhelmina Braunschweig, Dept Bioinformat & Biochem, BRICS, Braunschweig, Germany
基金
美国国家卫生研究院;
关键词
BCAA; BCAT; cell size; isotope tracing; TORC1; SACCHAROMYCES-CEREVISIAE; EARLY G1; C-MYC; RAPAMYCIN; MITOCHONDRIAL; DIVISION; TARGET; ECA39; TRANSAMINASES; METABOLITES;
D O I
10.15252/embr.202357372
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
How cells coordinate their metabolism with division determines the rate of cell proliferation. Dynamic patterns of metabolite synthesis during the cell cycle are unexplored. We report the first isotope tracing analysis in synchronous, growing budding yeast cells. Synthesis of leucine, a branched-chain amino acid (BCAA), increases through the G1 phase of the cell cycle, peaking later during DNA replication. Cells lacking Bat1, a mitochondrial aminotransferase that synthesizes BCAAs, grow slower, are smaller, and are delayed in the G1 phase, phenocopying cells in which the growth-promoting kinase complex TORC1 is moderately inhibited. Loss of Bat1 lowers the levels of BCAAs and reduces TORC1 activity. Exogenous provision of valine and, to a lesser extent, leucine to cells lacking Bat1 promotes cell division. Valine addition also increases TORC1 activity. In wild-type cells, TORC1 activity is dynamic in the cell cycle, starting low in early G1 but increasing later in the cell cycle. These results suggest a link between BCAA synthesis from glucose to TORC1 activation in the G1 phase of the cell cycle.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Early administration of branched-chain amino acid granules
    Ishikawa, Toru
    WORLD JOURNAL OF GASTROENTEROLOGY, 2012, 18 (33) : 4486 - 4490
  • [2] Early administration of branched-chain amino acid granules
    Toru Ishikawa
    World Journal of Gastroenterology, 2012, (33) : 4486 - 4490
  • [3] Regulation of branched-chain amino acid metabolism and pharmacological effects of branched-chain amino acids
    Shimomura, Y
    Murakami, T
    Nagasaki, M
    Honda, T
    Goto, H
    Kotake, K
    Kurokawa, T
    Nonami, T
    HEPATOLOGY RESEARCH, 2004, 30 : S3 - S8
  • [4] Branched-chain keto acid dehydrogenase of yeast
    Dickinson, JR
    BRANCHED-CHAIN AMINO ACIDS, PT B, 2000, 324 : 389 - 398
  • [5] BRANCHED-CHAIN SUGARS .10. SYNTHESIS OF BRANCHED-CHAIN AMINO-SUGARS
    GUNNER, SW
    KING, RD
    OVEREND, WG
    WILLIAMS, NR
    JOURNAL OF THE CHEMICAL SOCIETY C-ORGANIC, 1970, (14): : 1954 - &
  • [6] Branched-chain fatty acid biosynthesis in a branched-chain amino acid aminotransferase mutant of Staphylococcus carnosus
    Beck, HC
    FEMS MICROBIOLOGY LETTERS, 2005, 243 (01) : 37 - 44
  • [7] BRANCHED-CHAIN AMINO-ACID PERFUSION
    MCMILLIN, JB
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 1989, 98 (04): : 632 - 633
  • [8] Branched-chain amino acid biosynthesis in fungi
    Stayer, Joel T.
    Todd, Richard B.
    ESSAYS IN BIOCHEMISTRY, 2023, 67 (05) : 865 - 876
  • [9] Branched-chain amino acid metabolism in cancer
    Ananieva, Elitsa A.
    Wilkinson, Adam C.
    CURRENT OPINION IN CLINICAL NUTRITION AND METABOLIC CARE, 2018, 21 (01): : 64 - 70
  • [10] BRANCHED-CHAIN AMINO-ACID-METABOLISM
    HARPER, AE
    MILLER, RH
    BLOCK, KP
    ANNUAL REVIEW OF NUTRITION, 1984, 4 : 409 - 454