Fault Feature Extraction Method for Rolling Bearings Based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Variational Mode Decomposition

被引:2
|
作者
Wang, Lijing [1 ]
Li, Hongjiang [1 ]
Xi, Tao [2 ]
Wei, Shichun [1 ]
机构
[1] Tianjin Chengjian Univ, Sch Control & Mech Engn, Tianjin 300384, Peoples R China
[2] Tiangong Univ, Sch Mech Engn, Tianjin 300387, Peoples R China
关键词
rolling bearing; fault feature extraction; CEEMDAN; VMD; SSA; DIAGNOSIS; CLASSIFICATION; ALGORITHM; FILTER; VMD;
D O I
10.3390/s23239441
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Due to the difficulty in dealing with non-stationary and nonlinear vibration signals using the single decomposition method, it is difficult to extract weak fault features from complex noise; therefore, this paper proposes a fault feature extraction method for rolling bearings based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and variational mode decomposition (VMD) methods. CEEMDAN was used to decompose the signal, and the signal was then screened and reconstructed according to the component envelope kurtosis. Based on the kurtosis of the maximum envelope spectrum as the fitness function, the sparrow search algorithm (SSA) was used to perform adaptive parameter optimization for VMD, which decomposed the reconstructed signal into several IMF components. According to the kurtosis value of the envelope spectrum, the optimal component was selected for an envelope demodulation analysis to realize fault feature extraction for rolling bearings. Finally, by using open data sets and experimental data, the accuracy of envelope kurtosis and envelope spectrum kurtosis as a component selection index was verified, and the superiority of the proposed feature extraction method for rolling bearings was confirmed by comparing it with other methods.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Self-Adaptive Fault Feature Extraction of Rolling Bearings Based on Enhancing Mode Characteristic of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
    Ma, Fang
    Zhan, Liwei
    Li, Chengwei
    Li, Zhenghui
    Wang, Tingjian
    [J]. SYMMETRY-BASEL, 2019, 11 (04):
  • [2] Bearing fault feature extraction method based on complete ensemble empirical mode decomposition with adaptive noise
    Xiao, Maohua
    Zhang, Cunyi
    Wen, Kai
    Xiong, Longfei
    Geng, Guosheng
    Wu, Dan
    [J]. JOURNAL OF VIBROENGINEERING, 2018, 20 (07) : 2622 - 2631
  • [3] Rolling Bearings Fault Diagnosis Based on Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, Nonlinear Entropy, and Ensemble SVM
    Li, Rui
    Ran, Chao
    Zhang, Bin
    Han, Leng
    Feng, Song
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (16):
  • [4] Fault Feature Extraction of Rolling Bearings Based on Variational Mode Decomposition and Singular Value Entropy
    Zhang, Chen
    Zhao, Rongzhen
    Deng, Linfeng
    [J]. 2ND INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND INDUSTRIAL AUTOMATION (ICITIA 2017), 2017, : 296 - 300
  • [5] A COMPLETE ENSEMBLE EMPIRICAL MODE DECOMPOSITION WITH ADAPTIVE NOISE
    Torres, Maria E.
    Colominas, Marcelo A.
    Schlotthauer, Gaston
    Flandrin, Patrick
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4144 - 4147
  • [6] Feature Signal Extraction Based on Ensemble Empirical Mode Decomposition for Multi-fault Bearings
    Guo, W.
    Wang, K. S.
    Wang, D.
    Tse, P. W.
    [J]. ENGINEERING ASSET MANAGEMENT - SYSTEMS, PROFESSIONAL PRACTICES AND CERTIFICATION, 2015, : 1337 - 1347
  • [7] Fault Diagnosis of Rolling Element Bearings Based on Ensemble Empirical Mode Decomposition
    Feng Zhipeng
    Chen Yanjuan
    Ma Fei
    Liu Li
    Hao Rujiang
    Chu Fulei
    [J]. 2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 2992 - 2995
  • [8] Early fault feature extraction for rolling bearings using adaptive variational mode decomposition with noise suppression and fast spectral correlation
    Tian, Shaoning
    Zhen, Dong
    Liang, Xiaoxia
    Feng, Guojin
    Cui, Lingli
    Gu, Fengshou
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (06)
  • [9] An Automatic Fault Diagnosis Method for Aerospace Rolling Bearings Based on Ensemble Empirical Mode Decomposition
    Wang, Hong
    Liu, Hongxing
    Qing, Tao
    Liu, Wenyang
    He, Tian
    [J]. 2017 8TH INTERNATIONAL CONFERENCE ON MECHANICAL AND AEROSPACE ENGINEERING (ICMAE), 2017, : 502 - 506
  • [10] An adaptive denoising fault feature extraction method based on ensemble empirical mode decomposition and the correlation coefficient
    Yang, Huixiang
    Ning, Tengfei
    Zhang, Bangcheng
    Yin, Xiaojing
    Gao, Zhi
    [J]. ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (04) : 1 - 9