A GIS-based multi-objective evolutionary algorithm for landslide susceptibility mapping

被引:3
|
作者
Razavi-Termeh, Seyed Vahid [1 ]
Hatamiafkoueieh, Javad [2 ]
Sadeghi-Niaraki, Abolghasem [1 ]
Choi, Soo-Mi [1 ]
Al-Kindi, Khalifa M. [3 ]
机构
[1] Sejong Univ, XR Res Ctr, Dept Comp Sci & Engn & Convergence Engn Intelligen, Seoul, South Korea
[2] PeoplesFriendship Univ Russia, RUDN Univ, Acad Engn, Dept Mech & Control Proc, Miklukho Maklaya Str 6, Moscow 117198, Russia
[3] Univ Nizwa, UNESCO Chair Aflaj Studies, Archaeohydrol, Nizwa, Oman
关键词
Landslide; Spatial prediction; Multi-objective evolutionary fuzzy algorithm; Remote sensing; INFERENCE SYSTEM ANFIS; LAND-USE OPTIMIZATION; GENETIC ALGORITHM; DECISION TREE; FUZZY CLASSIFICATION; HAZARD ASSESSMENT; NSGA-II; MACHINE; MODELS; COUNTY;
D O I
10.1007/s00477-023-02562-6
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Landslides pose a significant threat to human life and infrastructure, underscoring the ongoing need for accurate landslide susceptibility mapping (LSM) to effectively assess risks. This study introduces an innovative approach that leverages multi-objective evolutionary fuzzy algorithms for landslide modeling in Khalkhal town, Iran. Two algorithms, namely the non-dominated sorting genetic algorithm II (NSGA-II) and the evolutionary non-dominated radial slots-based algorithm (ENORA), were employed to optimize Gaussian fuzzy rules. By utilizing 15 landslide conditioning factors (aspect, altitude, distance from the fault, soil, slope, lithology, rainfall, distance from the road, the normalized difference vegetation index (NDVI), land cover, plan curvature, profile curvature, topographic wetness index (TWI), stream power index (SPI), and distance from the river) and historical landslide events (153 landslide locations), we randomly partitioned the input data into training (70%) and validation (30%) sets. The training set determined the weight of conditioning factor classes using the frequency ratio (FR) approach. These weights were then used as inputs for the NSGA-II and ENORA algorithms to generate an LSM. The NSGA-II algorithm achieved a root-mean-square error (RMSE) of 0.25 during training and 0.43 during validation. Similarly, the ENORA algorithm demonstrated an RMSE of 0.28 in training and 0.48 in validation. The findings revealed that the LSM created by the NSGA-II algorithm exhibited superior predictive capabilities (area under the receiver operating characteristic curve (AUC) = 0.867) compared to the ENORA algorithm (AUC = 0.844). Additionally, a particle swarm optimization (PSO) algorithm was employed to determine the importance of conditioning factors, identifying lithology, land cover, and altitude as the most influential factors.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] GIS-Based Landslide Susceptibility Mapping in Qazvin Province of Iran
    Arjmandzadeh, Reza
    Sharifi Teshnizi, Ebrahim
    Rastegarnia, Ahmad
    Golian, Mohsen
    Jabbari, Parisa
    Shamsi, Husain
    Tavasoli, Sima
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2020, 44 (SUPPL 1) : 619 - 647
  • [2] A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping
    Feizizadeh, Bakhtiar
    Roodposhti, Majid Shadman
    Jankowski, Piotr
    Blaschke, Thomas
    [J]. COMPUTERS & GEOSCIENCES, 2014, 73 : 208 - 221
  • [3] GIS-Based Landslide Susceptibility Mapping on the Peloponnese Peninsula, Greece
    Chalkias, Christos
    Ferentinou, Maria
    Polykretis, Christos
    [J]. GEOSCIENCES, 2014, 4 (03) : 176 - 190
  • [4] GIS-Based Landslide Susceptibility Mapping in Qazvin Province of Iran
    Reza Arjmandzadeh
    Ebrahim Sharifi Teshnizi
    Ahmad Rastegarnia
    Mohsen Golian
    Parisa Jabbari
    Husain Shamsi
    Sima Tavasoli
    [J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2020, 44 : 619 - 647
  • [5] Landslide Susceptibility Mapping Using Different GIS-Based Bivariate Models
    Nohani, Ebrahim
    Moharrami, Meisam
    Sharafi, Samira
    Khosravi, Khabat
    Pradhan, Biswajeet
    Binh Thai Pham
    Lee, Saro
    Melesse, Assefa M.
    [J]. WATER, 2019, 11 (07)
  • [6] GIS-based ensemble soft computing models for landslide susceptibility mapping
    Pham, Binh Thai
    Phong, Tran Van
    Nguyen-Thoi, Trung
    Trinh, Phan Trong
    Tran, Quoc Cuong
    Ho, Lanh Si
    Singh, Sushant K.
    Duyen, Tran Thi Thanh
    Nguyen, Loan Thi
    Le, Huy Quang
    Le, Hiep Van
    Hanh, Nguyen Thi Bich
    Quoc, Nguyen Kim
    Prakash, Indra
    [J]. ADVANCES IN SPACE RESEARCH, 2020, 66 (06) : 1303 - 1320
  • [7] Landslide Susceptibility Mapping Using GIS-Based Data Mining Algorithms
    Vakhshoori, Vali
    Pourghasemi, Hamid Reza
    Zare, Mohammad
    Blaschke, Thomas
    [J]. WATER, 2019, 11 (11)
  • [8] GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region
    Kamp, Ulrich
    Growley, Benjamin J.
    Khattak, Ghazanfar A.
    Owen, Lewis A.
    [J]. GEOMORPHOLOGY, 2008, 101 (04) : 631 - 642
  • [9] GIS-based landslide susceptibility mapping using hybrid MCDM models
    Amin Salehpour Jam
    Jamal Mosaffaie
    Faramarz Sarfaraz
    Samad Shadfar
    Rouhangiz Akhtari
    [J]. Natural Hazards, 2021, 108 : 1025 - 1046
  • [10] GIS-based landslide susceptibility mapping in the Safi region, West Morocco
    Othmane Boualla
    Khalid Mehdi
    Ahmed Fadili
    Abdelhadi Makan
    Bendahhou Zourarah
    [J]. Bulletin of Engineering Geology and the Environment, 2019, 78 : 2009 - 2026