DeepVATS: Deep Visual Analytics for Time Series

被引:2
|
作者
Rodriguez-Fernandez, Victor [1 ]
Montalvo-Garcia, David [2 ]
Piccialli, Francesco [3 ]
Nalepa, Grzegorz J. [4 ]
Camacho, David [1 ]
机构
[1] Univ Politecn Madrid, Sch Comp Syst Engn, Calle Alan Turing, Madrid 28038, Spain
[2] Univ Politecn Madrid, Escuela Tecn Super Ingn Telecomunicac, Ave Complutense 30, Madrid 28040, Spain
[3] Univ Naples Federico II, Dept Math & Applicat R Caccioppoli, Naples, Italy
[4] Jagiellonian Univ, Inst Appl Comp Sci, Jagiellonian Human Ctr Artificial Intelligence La, PL-30348 Krakow, Poland
关键词
Deep learning; Visual analytics; Time series; Masked AutoEncoder;
D O I
10.1016/j.knosys.2023.110793
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The field of Deep Visual Analytics (DVA) has recently arisen from the idea of developing Visual Interactive Systems supported by deep learning, in order to provide them with large-scale data processing capabilities and to unify their implementation across different data and domains. In this paper we present DeepVATS, an open-source tool that brings the field of DVA into time series data. DeepVATS trains, in a self-supervised way, a masked time series autoencoder that reconstructs patches of a time series, and projects the knowledge contained in the embeddings of that model in an interactive plot, from which time series patterns and anomalies emerge and can be easily spotted. The tool includes a back-end for data processing pipeline and model training, as well as a front-end with an interactive user interface. We report on results that validate the utility of DeepVATS, running experiments on both synthetic and real datasets. The code is publicly available on https: //github.com/vrodriguezf/deepvats.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Visual Analytics for Model Selection in Time Series Analysis
    Boegl, Markus
    Aigner, Wolfgang
    Filzmoser, Peter
    Lammarsch, Tim
    Miksch, Silvia
    Rind, Alexander
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (12) : 2237 - 2246
  • [2] A Visual Analytics Approach to Multiscale Exploration of Environmental Time Series
    Sips, Mike
    Koethur, Patrick
    Unger, Andrea
    Hege, Hans-Christian
    Dransch, Doris
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012, 18 (12) : 2899 - 2907
  • [3] Visual Analytics of Multivariate Intensive Care Time Series Data
    Brich, N.
    Schulz, C.
    Peter, J.
    Klingert, W.
    Schenk, M.
    Weiskopf, D.
    Krone, M.
    [J]. COMPUTER GRAPHICS FORUM, 2022, 41 (06) : 273 - 286
  • [4] Clustering and Classification for Time Series Data in Visual Analytics: A Survey
    Ali, Mohammed
    Alqahtani, Ali
    Jones, Mark W.
    Xie, Xianghua
    [J]. IEEE ACCESS, 2019, 7 : 181314 - 181338
  • [5] Torwards Visual Analytics for the Exploration of Large Sets of Time Series
    Sips, Mike
    Witt, Carl
    Rawald, Tobias
    Marwan, Norbert
    [J]. RECURRENCE PLOTS AND THEIR QUANTIFICATIONS: EXPANDING HORIZONS, 2016, 180 : 3 - 17
  • [6] Unravelling groundwater time series patterns: Visual analytics-aided deep learning in the Namoi region of Australia
    Clark, Stephanie R.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2022, 149
  • [7] Visual Analytics Interface for Time Series Data based on Trajectory Manipulation
    Takami, Rei
    Takama, Yasufumi
    [J]. 2018 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2018), 2018, : 342 - 347
  • [8] Visual Analytics Approach to Comprehensive Meteorological Time-Series Analysis
    Vuckovic, Milena
    Schmidt, Johanna
    [J]. DATA, 2020, 5 (04) : 1 - 16
  • [9] Plotly-Resampler: Effective Visual Analytics for Large Time Series
    Van der Donckt, Jonas
    Van der Donckt, Jeroen
    Deprost, Emiel
    Van Hoecke, Sofie
    [J]. 2022 IEEE VISUALIZATION CONFERENCE - SHORT PAPERS (VIS), 2022, : 21 - 25
  • [10] Visual Analytics of Phosphorylation Time-Series Data on Insulin Response
    Ma, David K. G.
    Stolte, Christian
    Kaur, Sandeep
    Bain, Michael
    O'Donoghue, Sean I.
    [J]. 2013 INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL MODELS FOR LIFE SCIENCES, 2013, 1559 : 185 - 196