Dynamic multitask optimization with improved knowledge transfer mechanism

被引:1
|
作者
Ren, Kun [1 ,2 ]
Xiao, Fu-Xia [1 ,2 ]
Han, Hong-Gui [1 ,2 ,3 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Minist Educ, Engn Res Ctr Digital Community, Beijing 100124, Peoples R China
[3] Beijing Univ Technol, Artificial Intelligence Inst & Beijing Lab Intell, Beijing 100124, Peoples R China
基金
美国国家科学基金会; 北京市自然科学基金;
关键词
Dynamic multitask optimization; Particle swarm optimization; Dynamic multi-objective optimization; Knowledge transfer; MULTIOBJECTIVE OPTIMIZATION; ALGORITHM; DECOMPOSITION;
D O I
10.1007/s10489-022-03282-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multitasking optimization (MTO) is promising to become the next-generation mainstream optimization paradigm for optimizing multiple tasks simultaneously with high efficiency and accuracy. However, despite dynamic tasks abound in the real world, such as flow shop scheduling, vehicle routing, IoT, machine learning, research on dynamic multitask optimization (DMTO) has been rarely reported. DMTO problems are more challenging than MTO with static tasks or a single dynamic optimization. In this paper, a dynamic multitask optimization algorithm with an improved knowledge transfer mechanism (IK_DMTO) is proposed to solve the DMTO problems. Firstly, an improved knowledge transfer mechanism is designed to promote knowledge utilization by conditionally selecting the scale of knowledge transfer and reduce negative migration by selectively performing the crossover operation between tasks. Secondly, a new individual information update strategy is applied to guide the individual updates, in which the leaders of the sub-populations formed during the knowledge transfer process are utilized to adjust the direction of individuals to make the utmost of knowledge between tasks, and an external archive management strategy is introduced to achieve a better distribution of non-dominated solutions. Finally, nine dynamic multi-objective multitask optimization (DMOMTO) problems are constructed with the dynamic multi-objective benchmark functions to verify the effectiveness of IK_DMTO. The experimental results show that IK_DMTO can perform well on convergence compared to the comparison algorithms.
引用
收藏
页码:1666 / 1682
页数:17
相关论文
共 50 条
  • [1] Dynamic multitask optimization with improved knowledge transfer mechanism
    Kun Ren
    Fu-Xia Xiao
    Hong-Gui Han
    Applied Intelligence, 2023, 53 : 1666 - 1682
  • [2] Evolutionary Multitask Optimization With Adaptive Knowledge Transfer
    Xu, Hao
    Qin, A. K.
    Xia, Siyu
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (02) : 290 - 303
  • [3] Distributed Knowledge Transfer for Evolutionary Multitask Multimodal Optimization
    Gao, Kailai
    Yang, Cuie
    Ding, Jinliang
    Tan, Kay Chen
    Chai, Tianyou
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (04) : 1141 - 1155
  • [4] Block-Level Knowledge Transfer for Evolutionary Multitask Optimization
    Jiang, Yi
    Zhan, Zhi-Hui
    Tan, Kay Chen
    Zhang, Jun
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (01) : 558 - 571
  • [5] Multiobjective Multitask Optimization-Neighborhood as a Bridge for Knowledge Transfer
    Wang, Xianpeng
    Dong, Zhiming
    Tang, Lixin
    Zhang, Qingfu
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (01) : 155 - 169
  • [6] Multiobjective Multitask Optimization With Multiple Knowledge Types and Transfer Adaptation
    Li, Yanchi
    Gong, Wenyin
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2025, 29 (01) : 205 - 216
  • [7] Neural Network-Based Knowledge Transfer for Multitask Optimization
    Xue, Zhao-Feng
    Wang, Zi-Jia
    Zhan, Zhi-Hui
    Kwong, Sam
    Zhang, Jun
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (12) : 7541 - 7554
  • [8] Adaptive knowledge transfer-based particle swarm optimization for constrained multitask optimization
    Bai, Xing
    Hou, Ying
    Han, Honggui
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 87
  • [9] Orthogonal Transfer for Multitask Optimization
    Wu, Sheng-Hao
    Zhan, Zhi-Hui
    Tan, Kay Chen
    Zhang, Jun
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (01) : 185 - 200
  • [10] A Meta-Knowledge Transfer-Based Differential Evolution for Multitask Optimization
    Li, Jian-Yu
    Zhan, Zhi-Hui
    Tan, Kay Chen
    Zhang, Jun
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (04) : 719 - 734