Effect of high-volume substituted nanosilica on the hydration and mechanical properties of Ultra-High-Performance Concrete (UHPC)

被引:11
|
作者
Oh, Taekgeun [1 ]
Chun, Booki [2 ]
Lee, Seung Kyun [2 ]
Kim, Gi Woong [2 ]
Banthia, Nemkumar [3 ]
Yoo, Doo-Yeol [1 ]
机构
[1] Yonsei Univ, Dept Architecture & Architectural Engn, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Hanyang Univ, Dept Architectural Engn, 222 Wangsimni Ro, Seoul 04763, South Korea
[3] Univ British Columbia, Dept Civil Engn, 6250 Appl Sci Lane, Vancouver, BC V6T 1Z4, Canada
基金
新加坡国家研究基金会;
关键词
Ultra-High-Performance Concrete; Nanosilica; Mechanical properties; Hydration; Packing density; C-S-H; FLEXURAL BEHAVIOR; SILICA FUME; FIBER DISTRIBUTION; PULLOUT BEHAVIOR; CEMENT PASTE; NANO-SILICA; MICROSTRUCTURE; TEMPERATURE; LIMESTONE;
D O I
10.1016/j.cemconres.2023.107379
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The effect of substituting a large amount of silica fume (SF) with nanosilica (NS) on the hydration behavior and mechanical properties of Ultra-High-Performance Concrete (UHPC) was investigated. Derivative thermogravimetric analysis showed that NS had the highest reactivity among the ingredients used in the UHPC mix. As the NS substitution rate increased, the time corresponding to the maximum exothermic peak decreased, and the maximum exothermic peak increased. Nuclear magnetic resonance results verified that the longest mean (silicate) chain length of C-S-H, which is 16.8 that it is improved approximately 68 % than plain specimen, was obtained at 10 % NS replacement rate. In the matrix (i.e., UHPC), the highest compressive strength is 161.5 MPa which obtained 10 % NS replacement rate, and the compressive strength was gradually decreased when NS replacement rate was increased more than 20 %. The highest compressive strength and the best tensile performance of UHP-FRC, i.e., the tensile strength and strain energy density, were also obtained at 10 % NS replacement, and there were improved approximately 2.2 %, 9.3 %, and 42.7 % compared to the plain specimen, respectively. However, the highest pullout strength and lowest porosity were achieved with 20 % NS replacement due to the densified fiber-matrix interfacial transition zone. These results suggest that the optimal rate of substitution of SF with NS in UHPC is 10 %-20 %.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Effect of Sodium Gluconate on Properties and Microstructure of Ultra-High-Performance Concrete (UHPC)
    Wu, Yonghua
    Yuan, Yibing
    Niu, Mengdie
    Kuang, Yufeng
    MATERIALS, 2023, 16 (09)
  • [2] The Influence of Materials on the Mechanical Properties of Ultra-High-Performance Concrete (UHPC): A Literature Review
    da Silva, Mariana Lage
    Prado, Lisiane Pereira
    Felix, Emerson Felipe
    de Sousa, Alex Micael Dantas
    Aquino, Davi Peretta
    MATERIALS, 2024, 17 (08)
  • [3] Research on mechanical properties and hydration characteristics of ultra-high performance concrete with high-volume fly ash microsphere
    Fang, Zheng
    Luo, Yaoling
    Chen, Hong
    Gao, Yuxin
    Yang, Wen
    Wang, Chong
    JOURNAL OF BUILDING ENGINEERING, 2023, 78
  • [4] EFFECT OF MIXER TYPE ON FRESH AND HARDENED PROPERTIES OF ULTRA-HIGH-PERFORMANCE CONCRETE (UHPC)
    Ozolins, Ernests
    Zavickis, Juris
    Lukasenoks, Arturs
    Macanovskis, Arturs
    20TH INTERNATIONAL SCIENTIFIC CONFERENCE ENGINEERING FOR RURAL DEVELOPMENT, 2021, : 1617 - 1626
  • [5] New development of ultra-high-performance concrete (UHPC)
    Du, Jiang
    Meng, Weina
    Khayat, Kamal H.
    Bao, Yi
    Guo, Pengwei
    Lyu, Zhenghua
    Abu-obeidah, Adi
    Nassif, Hani
    Wang, Hao
    COMPOSITES PART B-ENGINEERING, 2021, 224
  • [6] Nanomaterials in ultra-high-performance concrete (UHPC)-A review
    Yoo, Doo-Yeol
    Oh, Taekgeun
    Banthia, Nemkumar
    CEMENT & CONCRETE COMPOSITES, 2022, 134
  • [7] Mechanical Properties and Durability of Ultra-High-Performance Concrete
    Magureanu, Cornelia
    Sosa, Ioan
    Negrutiu, Camelia
    Heghes, Bogdan
    ACI MATERIALS JOURNAL, 2012, 109 (02) : 177 - 183
  • [8] High-volume fly ash paste for developing ultra-high performance concrete (UHPC)
    Ferdosian I.
    Camões A.
    Ribeiro M.
    Ferdosian, Iman (iman_fn2007@yahoo.com), 1600, Elsevier B.V., Netherlands (29): : e157 - e161
  • [9] Optimisation and Prediction of Fresh Ultra-High-Performance Concrete Properties Enhanced with Nanosilica
    Aswed, Khaldon Kasim
    Hassan, Maan S.
    Al-Quraishi, Hussein
    JOURNAL OF ADVANCED CONCRETE TECHNOLOGY, 2022, 20 (02) : 103 - 116
  • [10] Influence of graphene oxide in the hydration mechanism by reinforcing mechanical strength and microstructural Characterization of ultra-high-performance concrete (UHPC)
    Regalla, Sathyasai
    Kumar, N. Senthil
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2023, 1 (170-187)