Stemness maintenance of stem cells derived from human exfoliated deciduous teeth (SHED) in 3D spheroid formation through the TGF-β/Smad signaling pathway

被引:2
|
作者
Li, Hongwen [1 ,2 ,3 ]
Jiang, Jing [1 ,2 ]
Kong, Haiying [1 ,2 ]
Wu, Wenbo [1 ,2 ,3 ]
Shao, Xiaomin [4 ]
Qiu, Shuqi [1 ,2 ]
Xianhai, Hongwen [1 ,2 ]
Zhong, Qinghong [1 ,2 ]
Yao, Xinhui [1 ,2 ]
Zeng, Xiantao [1 ,2 ]
Gou, Lingshan [5 ]
Xu, Jian [1 ,2 ,3 ]
机构
[1] Longgang ENT Hosp, Shenzhen 518172, Guangdong, Peoples R China
[2] Inst ENT, Shenzhen Key Lab ENT, Shenzhen 518172, Guangdong, Peoples R China
[3] Shenzhen Longgang Inst Stomatol, Shenzhen 518172, Guangdong, Peoples R China
[4] Longgang Dist Peoples Hosp Shenzhen, Shenzhen 518116, Guangdong, Peoples R China
[5] Xuzhou Matern & Child Hlth Care Hosp, Xuzhou 221009, Jiangsu, Peoples R China
关键词
3D spheroid culture; Stemness maintenance; Stem cells derived from human exfoliated deciduous teeth (SHED); TGF-f3/Smad signaling; DENTAL-PULP; FATE DETERMINATION; CULTURE; DIFFERENTIATION; PROLIFERATION; PLURIPOTENCY; REGENERATION; SURVIVAL; LINEAGE; NANOG;
D O I
10.22514/jocpd.2023.081
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Mesenchymal stem cells (MSCs) have shown great potential as important therapeutic tools for dental pulp tissue engineering, with the maintenance and enhancement of their stemness being crucial for successful therapeutic application in vivo and threedimensional (3D) spheroid formation considered a reliable technique for enhancing their pluripotency. Human exfoliated deciduous tooth stem cells (SHED) were cultured in a low attachment plate to form aggregates for five days. Then, the resulting spheroids were analyzed for pluripotent marker expression, paracrine secretory function, proliferation, signaling pathways involved, and distribution of key proteins within the spheroids. The results indicated that 3D spheroid formation significantly increased the activation of the transforming growth factor beta (TGF-f3)/Smad signaling pathway and upregulated the secretion and mRNA expression levels of TGF-f3, which in turn enhanced the expression of pluripotency markers in SHED spheroids. The activation of the TGFf3/Smad signaling pathway through 3D spheroid formation was found to preserve the stemness properties of SHED. Thus, understanding the mechanisms behind pluripotency maintenance of SHED culture through 3D spheroid formation could have implications for the therapeutic application of MSCs in regenerative medicine and tissue engineering.
引用
收藏
页码:74 / 85
页数:12
相关论文
共 50 条
  • [1] SHED: Stem cells from human exfoliated deciduous teeth
    Miura, M
    Gronthos, S
    Zhao, MR
    Lu, B
    Fisher, LW
    Robey, PG
    Shi, ST
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (10) : 5807 - 5812
  • [2] SHED - Stem cells from human exfoliated deciduous teeth.
    Miura, M.
    Gronthos, S.
    Zhao, M.
    Lu, B.
    Fisher, L. W.
    Robey, P. G.
    Shi, S.
    JOURNAL OF DENTAL RESEARCH, 2003, 82 : B305 - B305
  • [3] Stem Cells Derived from Human Exfoliated Deciduous Teeth (SHED) in Neuronal Disorders: A Review
    Anoop, Minu
    Datta, Indrani
    CURRENT STEM CELL RESEARCH & THERAPY, 2021, 16 (05) : 535 - 550
  • [4] Characteristics of stem cells from human exfoliated deciduous teeth (SHED) from intact cryopreserved deciduous teeth
    Lee, Hyo-Seol
    Jeon, Mi Jung
    Kim, Seong-Oh
    Kim, Seung-Hye
    Lee, Jea-Ho
    Ahn, Su-Jin
    Shin, Yooseok
    Song, Je Seon
    CRYOBIOLOGY, 2015, 71 (03) : 374 - 383
  • [5] Enhancing Proliferation of Stem Cells from Human Exfoliated Deciduous Teeth (SHED) through hTERT Expression while Preserving Stemness and Multipotency
    Yadav, Pooja
    Vats, Ravina
    Wadhwa, Sapna
    Bano, Afsareen
    Namdev, Ritu
    Gupta, Monika
    Bhardwaj, Rashmi
    STEM CELL REVIEWS AND REPORTS, 2024, 20 (07) : 1902 - 1914
  • [6] Banking Stem Cells from Human Exfoliated Deciduous Teeth (SHED): Saving for the Future
    Arora, Vipin
    Arora, Pooja
    Munshi, A. K.
    JOURNAL OF CLINICAL PEDIATRIC DENTISTRY, 2009, 33 (04) : 289 - 294
  • [7] Effects of triclosan exposure on stem cells from human exfoliated deciduous teeth (SHED) fate
    Deng, Shiwen
    Li, Caifeng
    Chen, Junqi
    Cui, Zhao
    Lei, Tong
    Yang, Hongjun
    Chen, Peng
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 905
  • [8] Differentiation of peripheral sensory neurons from iPSCs derived from stem cells from human exfoliated deciduous teeth (SHED)
    Oliveira, Nathalia C.
    Russo, Fabiele B.
    Beltrao-Braga, Patricia
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2023, 11
  • [9] Hopes and opportunities of stem cells from human exfoliated deciduous teeth (SHED) in cartilage tissue regeneration
    Mahdavi-Jouibari, Forough
    Parseh, Benyamin
    Kazeminejad, Ezatolah
    Khosravi, Ayyoob
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [10] Rigid matrix supports osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHED)
    Viale-Bouroncle, Sandra
    Gosau, Martin
    Kuepper, Kevin
    Moehl, Christoph
    Brockhoff, Gero
    Reichert, Torsten E.
    Schmalz, Gottfried
    Ettl, Tobias
    Morsczeck, Christian
    DIFFERENTIATION, 2012, 84 (05) : 366 - 370