Discovering Graph Differential Dependencies

被引:0
|
作者
Zhang, Yidi [1 ]
Kwashie, Selasi [2 ]
Bewong, Michael [3 ]
Hu, Junwei [1 ]
Mahboubi, Arash [3 ]
Guo, Xi [1 ]
Feng, Zaiwen [1 ]
机构
[1] Huazhong Agr Univ, Coll Informat, Wuhan, Hubei, Peoples R China
[2] Charles Sturt Univ, AI & Cyber Futures Inst, Bathurst, NSW, Australia
[3] Charles Sturt Univ, Sch Comp Math & Engn, Wagga Wagga, NSW, Australia
来源
关键词
Graph differential dependency; Graph dependencies; Data dependencies; Dependency discovery; FREQUENT; SUBGRAPH;
D O I
10.1007/978-3-031-47843-7_18
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph differential dependencies (GDDs) are a novel class of integrity constraints in property graphs for capturing and expressing the semantics of difference in graph data. They are more expressive, and subsume other graph dependencies; and thus, are more useful for addressing many real-world graph data quality/management problems. In this paper, we study the general discovery problem for GDDs - the task of finding a non-redundant and succinct set of GDDs that hold in a given property graph. Indeed, we present characterisations of GDDs based on their semantics, extend existing data structures, and device pruning strategies to enable our proposed level-wise discovery algorithm, GDDMiner, returns a minimal cover of valid GDDs efficiently. Further, we perform experiments over three real-world graphs to demonstrate the feasibility, scalability, and effectiveness of our solution.
引用
收藏
页码:259 / 272
页数:14
相关论文
共 50 条
  • [1] Discovering Graph Functional Dependencies
    Fan, Wenfei
    Hu, Chunming
    Liu, Xueli
    Lu, Ping
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2020, 45 (03):
  • [2] Discovering Graph Functional Dependencies
    Fan, Wenfei
    Hu, Chunming
    Liu, Xueli
    Lu, Ping
    SIGMOD'18: PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2018, : 427 - 439
  • [3] An efficient approach for discovering Graph Entity Dependencies (GEDs)
    Liu, Dehua
    Kwashie, Selasi
    Zhang, Yidi
    Zhou, Guangtong
    Bewong, Michael
    Wu, Xiaoying
    Guo, Xi
    He, Keqing
    Feng, Zaiwen
    INFORMATION SYSTEMS, 2024, 125
  • [4] GIG: Graph Data Imputation With Graph Differential Dependencies
    Hua, Jiang
    Bewong, Michael
    Kwashie, Selasi
    Rahman, Md Geaur
    Hui, Junwei
    Guo, Xi
    Feng, Zaiwen
    DATABASES THEORY AND APPLICATIONS, ADC 2024, 2025, 15449 : 347 - 358
  • [5] Discovering Conditional Functional Dependencies
    Fan, Wenfei
    Geerts, Floris
    Li, Jianzhong
    Xiong, Ming
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2011, 23 (05) : 683 - 698
  • [6] Discovering Conditional Functional Dependencies
    Fan, Wenfei
    Geerts, Floris
    Lakshmanan, Laks V. S.
    Xiong, Ming
    ICDE: 2009 IEEE 25TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, VOLS 1-3, 2009, : 1231 - +
  • [7] Discovering Band Order Dependencies
    Li, Pei
    Szlichta, Jaroslaw
    Bohlen, Michael
    Srivastava, Divesh
    2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2020), 2020, : 1878 - 1881
  • [8] Discovering dependencies in sound descriptors
    Wieczorkowska, AA
    Zytkow, JM
    INTELLIGENT INFORMATION PROCESSING AND WEB MINING, 2003, : 431 - 438
  • [9] Certus: An Effective Entity Resolution Approach with Graph Differential Dependencies (GDDs)
    Kwashie, Selasi
    Liu, Lin
    Liu, Jixue
    Stumptner, Markus
    Li, Jiuyong
    Yang, Lujing
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 12 (06): : 653 - 666
  • [10] Discovering dependencies with reliable mutual information
    Panagiotis Mandros
    Mario Boley
    Jilles Vreeken
    Knowledge and Information Systems, 2020, 62 : 4223 - 4253