Gaps between consecutive eigenvalues for compact metric graphs

被引:1
|
作者
Borthwick, David [1 ]
Harrell II, Evans M. [2 ]
Yu, Haozhe [1 ]
机构
[1] Emory Univ, Dept Math, Atlanta, GA 30322 USA
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
Spectral theory; Quantum graphs; Eigenvalue gap; SPECTRAL GAP; INEQUALITIES;
D O I
10.1016/j.jmaa.2023.127802
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On a compact metric graph, we consider the spectrum of the Laplacian defined with a mix of standard and Dirichlet vertex conditions. A Cheeger-type lower bound on the gap lambda 2 - lambda 1 is established, with a constant that depends only on the total length of the graph and minimum edge length. We also prove some improvements of known upper bounds for eigenvalue gaps and ratios for metric trees and extensions to certain other types of graphs.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] ESTIMATES OF THE GAPS BETWEEN CONSECUTIVE EIGENVALUES OF LAPLACIAN
    Chen, Daguang
    Zheng, Tao
    Yang, Hongcang
    PACIFIC JOURNAL OF MATHEMATICS, 2016, 282 (02) : 293 - 311
  • [2] Differences Between Robin and Neumann Eigenvalues on Metric Graphs
    Band, Ram
    Schanz, Holger
    Sofer, Gilad
    ANNALES HENRI POINCARE, 2024, 25 (08): : 3859 - 3898
  • [3] Exotic eigenvalues of shrinking metric graphs
    Berkolaiko, Gregory
    de Verdiere, Yves Colin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 534 (01)
  • [4] Laplacians on metric graphs: Eigenvalues, resolvents and semigroups
    Kostrykin, Vadim
    Schrader, Robert
    QUANTUM GRAPHS AND THEIR APPLICATIONS, 2006, 415 : 201 - 225
  • [5] ON THE CONSECUTIVE EIGENVALUES OF THE LAPLACIAN OF A COMPACT MINIMAL SUBMANIFOLD IN A SPHERE
    LEUNG, PF
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1991, 50 : 409 - 416
  • [6] MAGNETIC BARRIERS OF COMPACT SUPPORT AND EIGENVALUES IN SPECTRAL GAPS
    Hempel, Rainer
    Besch, Alexander
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2003,
  • [7] Bounds on the Negative Eigenvalues of Laplacians on Finite Metric Graphs
    Amru Hussein
    Integral Equations and Operator Theory, 2013, 76 : 381 - 401
  • [9] ON THE NUMBER OF THE NEGATIVE EIGENVALUES ON A FINITE COMPACT METRIC TREE
    EL Aidi, Mohammed
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (07) : 3027 - 3033
  • [10] On the gaps between consecutive primes
    Sun, Yu-Chen
    Pan, Hao
    FORUM MATHEMATICUM, 2022, 34 (04) : 919 - 932