Super toughened blends of poly(lactic acid) and poly(butylene adipate-co-terephthalate) injection-molded foams via enhancing interfacial compatibility and cellular structure

被引:20
|
作者
Wu, Minghui [1 ,2 ]
Ren, Qian [1 ,3 ]
Zhu, Xiuyu [1 ]
Li, Wanwan [1 ]
Luo, Haibin [1 ]
Wu, Fei [1 ]
Wang, Long [1 ,3 ,4 ]
Zheng, Wenge [1 ,3 ]
Cui, Ping [2 ]
Yi, Xiaosu [2 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo Key Lab Polymer Mat, Ningbo 315201, Zhejiang, Peoples R China
[2] Univ Nottingham Ningbo China, Fac Sci & Engn, 199 Taikang East Rd, Ningbo 315000, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] 1219 Zhongguan West Rd, Ningbo 315201, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
PLA; PBAT foam; Reactive compatibilization; Super-tough; POLY LACTIC-ACID; MECHANICAL-PROPERTIES; REACTIVE EXTRUSION; PHASE MORPHOLOGY; BEHAVIOR; CRYSTALLIZATION; PLA; COMPOSITES; TEREPHTHALATE; TRANSITION;
D O I
10.1016/j.ijbiomac.2023.125490
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Biodegradable poly(lactic acid) (PLA) foams have drawn increasing attention due to environmental challenges and petroleum crisis. However, it still remains a challenge to prepare PLA foams with fine cellular structures and high impact property, which significantly hinders its widespread application. Herein, phase interface-enhanced PLA/ poly(butylene adipate-co-terephthalate) (PBAT) blend foam, modified by a reactive compatibilizer through a simple reactive extrusion, was produced via a core-back foam injection molding technique. The obtained PLA blend foams displayed an impact strength as high as 49.1 kJ/m2, which was 9.3 and 6.4 times that of the unmodified PLA/PBAT blend and its corresponding foam, respectively. It proved that the interfacial adhesion and cell size both strongly affected the impact strength of injection-molded PLA/PBAT foams, and two major conclusions were proposed. First, enhancing interfacial adhesion could cause a brittle-tough transition of PLA/PBAT foams. Additionally, for foams with high interfacial adhesion, small cell size (<12 & mu;m) was more favorable for the stretching of cells and extension of the whitened region in comparison with big cell size (cell size >60 & mu;m), leading to the drastic toughening of PLA blends. This study provides a feasible, industrially scalable and practical strategy to prepare super toughened and fully biodegradable PLA materials.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Enzymatic Degradation of Poly(Butylene Adipate-co-Terephthalate)/Poly(Lactic Acid) Blends
    Benninga, Joel
    Lima, Guilherme Macedo R.
    Ersek, Gabor
    Portale, Giuseppe
    Folkersma, Rudy
    Voet, Vincent S. D.
    Loos, Katja
    JOURNAL OF POLYMER SCIENCE, 2024,
  • [2] Enzymatic Degradation of Poly(Butylene Adipate-co-Terephthalate)/Poly(Lactic Acid) Blends
    Benninga, Joël
    Lima, Guilherme Macedo R.
    Érsek, Gábor
    Portale, Giuseppe
    Folkersma, Rudy
    Voet, Vincent S. D.
    Loos, Katja
    Journal of Polymer Science, 2024,
  • [3] Compatible and Crystallization Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends
    Yeh, Jen-Taut
    Tsou, Chi-Hui
    Huang, Chi-Yuan
    Chen, Kan-Nan
    Wu, Chin-San
    Chai, Wan-Lan
    JOURNAL OF APPLIED POLYMER SCIENCE, 2010, 116 (02) : 680 - 687
  • [4] Phase Structure Analysis and Composition Optimization of Poly(Lactic Acid)/Poly(Butylene Adipate-co-terephthalate) Blends
    Li, Guozhong
    Xia, Ying
    Mu, Guangqing
    Yang, Qian
    Zhou, Huimin
    Lin, Xiaojian
    Gao, Yuanmei
    Qian, Fang
    JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2022, 61 (03): : 413 - 424
  • [5] Investigation of toughening of poly(lactic acid) by poly(butylene adipate-co-terephthalate)
    Jiang, Long
    Qian, Jun
    Wolcott, Michael P.
    Zhang, Jinwen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U3761 - U3762
  • [6] Crystallization Behavior of Fully Biodegradable Poly(Lactic Acid)/Poly(Butylene Adipate-co-Terephthalate) Blends
    Xiao, Hanwen
    Lu, Wei
    Yeh, Jen-Taut
    JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 112 (06) : 3754 - 3763
  • [7] Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends
    Dil, Ebrahim Jalali
    Carreau, P. J.
    Favis, Basil D.
    POLYMER, 2015, 68 : 202 - 212
  • [8] Super Toughened Poly(lactic acid)-Based Ternary Blends via Enhancing Interfacial Compatibility
    Wu, Feng
    Misra, Manjusri
    Mohanty, Amar K.
    ACS OMEGA, 2019, 4 (01): : 1955 - 1968
  • [9] Development of poly (butylene adipate-co-terephthalate) PBAT toughened poly (lactic acid) blends 3D printing filament
    Juviya Mathew
    Jyoti Prakash Das
    Manoj TP
    Sudheer Kumar
    Journal of Polymer Research, 2022, 29
  • [10] Development of poly (butylene adipate-co-terephthalate) PBAT toughened poly (lactic acid) blends 3D printing filament
    Mathew, Juviya
    Das, Jyoti Prakash
    Tp, Manoj
    Kumar, Sudheer
    JOURNAL OF POLYMER RESEARCH, 2022, 29 (11)