Hierarchical Bayesian calibration of deck deflection models using distributed fiber optic strain data

被引:0
|
作者
Brewick, Patrick T. [1 ,2 ]
机构
[1] Univ Notre Dame, Notre Dame, IN 46556 USA
[2] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA
关键词
Distributed fiber optic sensing; Hierarchical Bayesian; Uncertainty quantification; Strain measurements; Deck deflection; PROBABILISTIC APPROACH; BRAGG-GRATINGS; SENSORS; ELEMENT; SHAPE; DISPLACEMENT; UNCERTAINTY; SELECTION;
D O I
10.1016/j.engstruct.2023.117077
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A naval hovercraft was outfitted with a distributed fiber optic sensing system (FOSS) on its cargo deck in which two fibers were placed along orthogonal axes. A series of trucks were loaded onto the cargo deck to simulate operational loading conditions and the resulting strain profiles were measured by the distributed FOSS. The aim of this study is to quantify the deck deflections that correspond to the measured strains under different vehicular loads. This is accomplished by idealizing the cargo deck as a rectangular plate and using the data to estimate the associated plate model parameters. In order to account for measurement noise and model prediction error, as well as the inherent variability of inferences made with different data sets, a hierarchical Bayesian scheme that considers both the model parameter uncertainty and the prediction error variance is utilized to derive the posterior distributions of the model hyper-parameters, i.e., their mean and variance. Given the volume of FOSS strain data available, different approaches were taken for incorporating the data into the hierarchical approach in order to determine whether the inclusion of all available strain data meaningfully reduced the uncertainty compared to using only time-averaged strain. Comparisons between the different approaches are explored in the context of 95% confidence intervals for strain profiles, deck deflection envelopes, and reliability indices based on allowable deflections.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Concrete Deflection Measurement Using Fiber Optic Distributed Strain System
    Papes, Martin
    Jaros, Jakub
    Fajkus, Marcel
    Hurta, Jan
    Liner, Andrej
    Hruby, David
    Vasinek, Vladimir
    INTERNATIONAL CONFERENCE ON PHOTONICS SOLUTIONS 2015, 2015, 9659
  • [2] Estimation of deflection curve of bridges using fiber optic strain sensors
    Cho, N
    Kim, N
    Jang, J
    Chang, S
    SMART STRUCTURES AND MATERIALS 2000: SMART SYSTEMS FOR BRIDGES, STRUCTURES, AND HIGHWAYS, 2000, 3988 : 339 - 348
  • [3] Fusing heterogeneous data for the calibration of molecular dynamics force fields using hierarchical Bayesian models
    Wu, Stephen
    Angelikopoulos, Panagiotis
    Tauriello, Gerardo
    Papadimitriou, Costas
    Koumoutsakos, Petros
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (24):
  • [4] Shape sensing using distributed fiber optic strain measurements
    Miller, GA
    Askins, CG
    Friebele, EJ
    SECOND EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS: PROCEEDINGS, 2004, 5502 : 528 - 531
  • [5] River levee strain measurement using fiber optic distributed strain sensor
    Naruse, H
    Uchiyama, T
    Kurashima, T
    Unno, S
    OFS-13: 13TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS & WORKSHOP ON DEVICE AND SYSTEM TECHNOLOGY TOWARD FUTURE OPTICAL FIBER COMMUNICATION AND SENSING, 1999, 3746 : 502 - 505
  • [6] DISTRIBUTED CONTROL USING FIBER OPTIC DATA HIGHWAY
    BLAIKLOCK, PM
    ISA TRANSACTIONS, 1983, 22 (03) : 81 - 87
  • [7] Transient Strain Monitoring of Weldments Using Distributed Fiber Optic System
    Mackey, David
    Martinez, Marcias
    Goldak, John
    Tchernov, Stanislav
    Aidun, Daryush K.
    METALS, 2023, 13 (05)
  • [8] A novel distributed fiber optic strain sensor
    García, MJ
    Ortega, JA
    Chávez, JA
    Salazar, J
    Turó, A
    IMTC/2001: PROCEEDINGS OF THE 18TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-3: REDISCOVERING MEASUREMENT IN THE AGE OF INFORMATICS, 2001, : 469 - 473
  • [9] Strain monitoring using distributed fiber optic sensors embedded in carbon fiber composites
    Jothibasu, Sasi
    Du, Yang
    Anandan, Sudharshan
    Dhaliwal, Gurjot S.
    Kaur, Amardeep
    Watkins, Steve E.
    Chandrashekhara, K.
    Huang, Jie
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2018, 2018, 10598
  • [10] Calibration of burst strength models of corroded pipelines using the hierarchical Bayesian method
    Bhardwaj, U.
    Teixeira, A. P.
    Soares, C. Guedes
    STRUCTURAL SAFETY, 2024, 108